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Problem Definition: One of the seventeen United Nations Sustainable Development Goals aims for

inclusive and equitable quality education, with lifelong benefits, for all (United Nations 2023). Our work

in this paper focuses on the operations of non-profit organizations (NPOs) that broaden access to high-

quality education for underprivileged students. Specifically, we analyze the resource-allocation strategy of

an NPO that adopts a two-stage structure in allocating resources to its beneficiaries; e.g., free pre-secondary

education (first stage) for all underprivileged students in a target population, followed by sponsorships

for post-secondary education (second stage) at leading institutions to those students who demonstrate

commendable performance in the first stage. The lifetime outcomes of the beneficiaries depend on their

own effort and on the quality of the resources that the NPO provides.

Methodology/Results: We adopt a principal-agent framework with moral hazard in the absence of

monetary transfers. We establish the strategic role of an NPO’s resource-allocation strategy on the effort

beneficiaries invest and their lifetime outcomes – in particular, despite the supportive nature of the NPO’s

resources and despite possessing enough quantity of these resources to support all beneficiaries, we show

why the NPO benefits from deliberately throttling access to the resources.

Managerial Implications: Our findings have important implications for the design of such support

policies of NPOs. For a fixed endowment of resources, we demonstrate the effect of competition among

the beneficiaries on their effort and lifetime outcomes. Likewise, for a fixed population of beneficiaries,

we show the value of creating a strategic scarcity of resources for incentivizing beneficiaries to exert more

effort. Finally, when faced with multiple beneficiary subgroups, we identify when the NPO benefits from

pooling the beneficiary subgroups vs. earmarking dedicated resources for each subgroup.

Key words : Non-Profit Organizations, Social Sustainability, Resource Allocation, Moral Hazard.

“Ensure inclusive and equitable quality education and promote lifelong learning opportunities for

all.”
— Goal #4 of the United Nations Sustainable Development Goals

https://sdgs.un.org/goals/goal4

1. Introduction

Nonprofit organizations (NPO’s) worldwide have long played an important role in improving the

lives of the underprivileged. Through a myriad of programs and initiatives, NPOs remain important
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institutions in our collective progress towards the United Nations’ Sustainable Development Goals

(SDGs; United Nations 2023). NPOs play an even greater role in developing countries, perhaps due

to weaker state capacity (International Monetary Fund 2023). To mention just two domains in which

NPOs have made commendable societal contributions towards achieving the UN’s SDGs: (a) NPOs

that operate in the delivery of healthcare, e.g., the Bill and Melinda Gates Foundation, offer a variety of

programs that focus on improving health and learning outcomes among disadvantaged groups (https:

//www.gatesfoundation.org/our-work), (b) NPOs in the education sector, e.g., the Tata Trusts,

focus on broadening access to high-quality education for underprivileged students (https://www.

tatatrusts.org/our-work/education/broadening-access).

An important determinant of the effectiveness of an NPO is its resource-allocation strategy, i.e.,

how it assigns resources to its beneficiaries (de Véricourt and Lobo 2009, Feng and Shanthikumar

2016). This work is motivated by resource allocation among nonprofit initiatives in which the outcome

to a beneficiary depends on their effort, such as in education. In particular, we focus on nonprofit

initiatives – supported by an NPO – that adopt a two-stage structure in allocating resources to its

beneficiaries: The first-stage support is standardized and is provided to all beneficiaries, while in

the second stage, the quality of support provided to the beneficiaries is contingent on their first-

stage performance. For instance, the first stage could be free K-12 education for all underprivileged

students in a targeted population of beneficiaries and the second stage could be free post-secondary

education – either at local universities with moderate admission criteria or at prestigious and highly

competitive universities – contingent on the level of their first-stage performance. As we will see from

the examples below, the two-stage structure is a reasonable abstraction of practice. However, in general,

our analysis and insights remain qualitatively similar for a multi-stage structure as well.

We now discuss examples of well-known NPOs in the education sector that have adopted such a

two-stage structure in their resource allocation.

Example 1: Tata Trusts is a prominent nonprofit organization supported by the Tata Group, a

renowned business conglomerate with a presence in 80 countries. It also serves as an incubator for

numerous nonprofit organizations, including the Karta Initiative, which operates in the education

sector. This initiative strives to broaden access to high-quality education for underprivileged individuals

from rural regions. To this end, the organization has established the Catalyst Scholarship Program

(https://karta-initiative.org.in/index.php/why-karta/). The program’s central purpose, as

defined by the organization, is as follows:

“We start working with young people when they turn 15, at the point when they are starting to

think about their future. Our support helps them to navigate this period and make the most of

post-school opportunities. But it doesn’t stop there. We continue supporting exceptional students

through to higher education at world-leading universities with our scholarship programme.”

https://www.gatesfoundation.org/our-work
https://www.gatesfoundation.org/our-work
https://www.tatatrusts.org/our-work/education/broadening-access
https://www.tatatrusts.org/our-work/education/broadening-access
https://karta-initiative.org.in/index.php/why-karta/
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Here, note that the NPO (Tata Trusts) uses an exogenous process through which a target population

of beneficiaries – namely, underprivileged students of age 15 from select rural regions – is identified.

Typically, the size of this target population is chosen such that the NPO has an adequate amount of

resources to support that size, if needed. The first stage of interaction between the NPO and the ben-

eficiaries corresponds to the pre-secondary phase (i.e., K-12) during which the organization provides

support to the chosen students. The NPO subsequently sponsors their post-secondary education, either

at local institutions that are easy to get admitted to or at renowned and selective universities world-

wide, depending on their performance in the pre-secondary phase. Thus, post-secondary education

constitutes the second stage of interaction between the NPO and the students.

Example 2: The D’Addario Foundation in the United States is dedicated to providing sup-

port to underprivileged students pursuing education in music (https://foundation.daddario.com/

why-support-us/). Through a range of programs, the foundation aims to empower these students and

offer them opportunities for a brighter future in music. One notable initiative by the foundation is a

college scholarship fund:

“The nonprofit D’Addario Foundation established a college scholarship fund in 2018 to distribute

merit and need-based scholarships to socio-economically disadvantaged youth. In order to receive

a scholarship, a student must study music in a grantee organization for multiple years and show

great promise but lack the resources to attend college or trade school.”

Here, pre-college music education at grantee organizations supported by the foundation represents

the first stage of interaction between the students and the foundation. Subsequently, to students who

display exceptional ability in the first phase, the foundation grants scholarships for college education

in the second stage of interaction.

Example 3: The National Overseas Scholarship Scheme (NOSS) of the Ministry of Social Justice

and Empowerment, Government of India, aims to financially assist underprivileged students seeking

higher education in top-ranked foreign institutes (https://nosmsje.gov.in/Default.aspx). The key

objective of the initiative, as described by the ministry, is as follows:

“The central sector scheme of National Overseas Scholarship is to facilitate low-income students

belonging to the Scheduled Castes, Denotified Nomadic and Semi-Nomadic Tribes, Landless Agri-

cultural Labourers, and Traditional Artisans category, to obtain higher education viz., Master

degree or Ph.D courses, by studying abroad, thereby improving their economic and social status.”

The government offers financial resources to candidates based on their academic performance and the

ranking of the institution they gain admission to. The progress of the candidates is monitored through

bi-annual reports for the continuation of the award in the future. In other words, the government

employs an output-contingent allocation of resources to the candidates over multiple stages.

https://foundation.daddario.com/why-support-us/
https://foundation.daddario.com/why-support-us/
https://nosmsje.gov.in/Default.aspx
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1.1. Research Questions and Main Results

To motivate our research questions, we use Tata Trusts’ scholarship program as a running example

in the discussion below. Consider an NPO that identifies a target population of beneficiaries through

an exogenous process. For instance, for Tata Trusts, this target population consists of underprivi-

leged 15-year-old students from select geographical areas. After the target population is identified, the

NPO adopts a two-stage structure of evaluation (as described in the examples above) in its resource-

allocation strategy. The quality of support provided to the beneficiaries during the first-stage of inter-

action between the NPO and the beneficiaries is standardized. In the context of the Tata Trusts, the

quality of support that is provided to all students in the pre-secondary phase is identical. However,

the second-stage support can vary in quality. For Tata Trusts, this is free college education provided

either at an inexpensive, local university (a base-quality resource) or an expensive, globally recognized

university (a superior resource). Figure 1 shows a broad schematic of the two-stage structure.

First Stage



NPO Commits to
a Resource-Allocation

Strategy

Beneficiaries Exert
First-Stage Effort

Each Beneficiary
Realizes

First-Stage Output

NPO Provides Each
Beneficiary w/ Either

the Superior Or
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Second Stage

Super
ior Resour

ce

Base-Quality Resource

Beneficiaries Exert
Second-Stage Effort

Beneficiaries Exert
Second-Stage Effort
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Each Beneficiary
Realizes

Second-Stage Output

Figure 1 Schematic of the NPO’s Two-Stage Structure for Allocating Resources to its Beneficiaries

The lifetime outcome of a beneficiary, a key component of the NPO’s objective, is increasing in the

beneficiary’s effort in both stages. For example, Tata Trusts prefers that a student exert high effort

both in the pre-secondary and post-secondary phases. Further, providing the beneficiary with the

superior resource in the second-stage complements their effort and results in a better lifetime outcome

as compared to providing the base-quality resource. For Tata Trusts, ceteris paribus, post-secondary

education at a globally-recognized university results in a better lifetime outcome for a student as

compared to that at a local, inexpensive university.
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Analysis under Resource Adequacy: Summary of Results and Insights

Suppose that the NPO has an adequate quantity of the superior resource to support their entire target

population of beneficiaries, if needed. We ask the following fundamental question:

(Q1) Despite possessing enough quantity of the superior resource for the entire target population of

beneficiaries, should an NPO throttle access to the superior resource? In other words, should

the NPO provide unrestricted access to the superior resource, or should the superior resource be

provided contingent on a beneficiary’s performance in the first stage?

The conventional wisdom to restricting access to the superior resource is its scarcity. Therefore, one

might intuit that in the absence of scarcity of the superior resource, the NPO should provide them to

all beneficiaries. Further, the NPO does not benefit from withholding the superior resource while the

beneficiary strictly benefits from receiving the resource. Moreover, for any level of stage-2 effort, the

beneficiary’s output is higher with the superior resource, as compared to that with the base-quality

resource. Despite these incentives, we show that the NPO benefits from deliberately restricting access

to the superior resource in the absence of scarcity. By making the access of the superior resource

contingent on the stage-1 output, the NPO induces a higher stage-1 output but a weaker stage-2

output (due to the possibility that the beneficiary might not always receive the superior resource),

relative to always providing access to the superior resource. We show that this strategy leads to a

superior outcome for both the NPO and the beneficiary, relative to that under unrestricted access.

More generally, our work addresses the following question:

(Q2) What is the strategic role of an NPO’s resource-allocation strategy on a beneficiary’s effort and

lifetime outcome?

From a theoretical standpoint, we adopt a principal-agent framework with moral hazard in the absence

of monetary transfers. A resource-allocation strategy of an NPO (principal) is essentially defined by

a menu of probability mass functions (with each such function also referred to as a lottery) over the

resources, for every possible realization of the first-stage output. While the canonical principal-agent

problem with moral hazard under a risk-neutral principal and a risk-neutral agent that allows for

transfers is simple to solve (Bolton and Dewatripont 2004), ours is one that does not involve any

monetary transfers. Further, unlike the canonical problem, the set of rewards (resources that the

NPO possesses) is a discrete set. We show that among all possible resource-allocation strategies, a

simple threshold strategy – where the NPO assigns the superior resource if and only if the beneficiary’s

first-stage output exceeds a threshold – is optimal. This understanding allows us to examine how a

beneficiary’s effort and lifetime outcome change with changes in the underlying environment.

Probing further, to understand the impact of the underlying environment (e.g., the beneficiary’s cost

of effort and the noise in the first stage outcome) on the NPO’s optimal resource-allocation strategy,

and thereby a beneficiary’s lifetime outcome in equilibrium, we examine the following question:
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(Q3) How does an increase in the beneficiary’s cost of effort and the noise in the first-stage outcome

affect the NPO’s propensity to provide the beneficiary with the superior resource?

In the canonical principal-agent problem with moral hazard, an agent’s effort cost or noise in the

environment are considered to be frictions that make contracting less efficient. However in our setting,

contrary to intuition, we show that the beneficiary is more likely to receive the superior resource if

their cost of effort is higher or there is greater noise in the first-stage outcome. This is despite the fact

that the beneficiary’s effort is decreasing in the cost of effort and the noise in the environment. We

discuss the underlying reasoning behind this property in Section 6.2.

In Section 3, we will define our two-stage model to address the above questions. Here, to emphasize

that our model is firmly rooted in our context, namely education, we briefly highlight three aspects

that the model captures and collectively distinguish it from other settings: (a) Students’ early-stage

academic efforts have a lifelong positive effect (Schweinhart 2003). (b) Students tend to overestimate

the cost of their early-stage effort and fail to sufficiently recognize its lifetime impact (Bettinger and

Slonim 2007, Kaur et al. 2010). The general phenomenon of overestimation of immediate costs is

referred to as hyperbolic discounting in the Behavioral Economics literature (O’Donoghue and Rabin

1999, 2015). (c) Adequately valuing childhood happiness and reducing student stress are important

factors that educational institutions should consider for achieving superior lifetime outcomes of their

students. While providing access to education, nonprofits often fall short of adequately recognizing

such factors, thereby under-emphasizing students’ cost of effort (Clark et al. 2020, Seror 2022).

Analysis under Resource Scarcity: Summary of Results and Insights

Having analyzed the setting where the NPO has an adequate amount of superior resources to support

its target population of beneficiaries, we turn to the case where an NPO may not have adequate

resources, i.e., the case of resource scarcity. We ask the following question:

(Q4) How does scarcity of resources (equivalently, competition among the beneficiaries) affect benefi-

ciaries’ efforts and lifetime outcomes?

We find that the effort exerted by the beneficiaries is non-monotone in the extent of resource scarcity.

Specifically, for low levels of scarcity, a beneficiary’s effort is increasing in the extent of scarcity.

However, for high levels of scarcity, agents tend to progressively “give up”, i.e., an agent’s effort is

decreasing in the extent of scarcity. Interpreted differently, this observation highlights that, from the

NPO’s viewpoint, the optimal amount of scarcity is intermediate (neither too low nor too high). Our

analysis helps us develop three valuable and actionable insights on how the NPO can benefit from

engineering a strategic scarcity of resources:



Author: Not-for-Profit Support in Education
7

� Design of the Beneficiary-Population for a Fixed Endowment of Resources: The role

of scarcity and the manner in which competition moderates beneficiaries’ effort has implications

for how an NPO should choose its target population of beneficiaries. For a given endowment of

resources, our results demonstrate that the NPO can induce superior outcomes by strategically

choosing the size of the beneficiary-population to induce the highest effort from the beneficiaries.

� Endowment of Resources and Strategic Scarcity: For a given population of beneficiaries,

we demonstrate the effect of the endowment of resources on the effort beneficiaries invest and

their lifetime outcomes. The endowment of resources that induces the highest effort from the

beneficiaries is neither too low nor too high; thus the NPO can benefit from allocating resources

strategically in a manner so as to create an ideal level of scarcity of resources.

� Pooled vs. Dedicated Resources for Multi-Beneficiary Pools: NPOs often design ini-

tiatives for multiple pools of beneficiaries. For example, the Tata Trusts organization supports

underprivileged students from multiple high schools in multiple states. A question that NPO man-

agers, who design such initiatives, face is whether these beneficiary pools should be provided with

dedicated resources (e.g., a dedicated number of resources per high school or state), or should all

the beneficiaries be pooled together and provided with the pooled set of resources? Our results

show that the choice depends on the extent of competition among the beneficiaries and resource

scarcity. Under low levels of competition, the NPO is better off by managing the multiple bene-

ficiary subgroups as one big pool. However, under high levels of competition, the NPO is better

off earmarking dedicated resources for each beneficiary pool.

It will be clear from our ensuing analysis that the questions above are all part of the same chain, and

understanding the resource-allocation is important to appreciate the strategic insights.

Extensions

We generalize our work in several directions to establish the robustness of the NPO’s optimal resource-

allocation strategy identified in our base model.

(a) Our base model analyzes the NPO’s optimal resource-allocation strategy for the case of two

(vertically differentiated) resources, viz., the superior resource and the base-quality resource, and

the NPO has sufficient amount of resources. In Section 7, to generalize our results to the case of

multiple (vertically differentiated) resources, we prove that the analysis under multiple (three or

more) resources can be reduced to the case of two resources.

(b) Our base model assumes a population of homogenous beneficiaries. In Section 9, we establish the

optimality of the threshold strategy for a population of heterogenous beneficiaries.

(c) Our base setting assumes an additive model for the beneficiary’s output, where the output is the

sum of the effort and a Gaussian noise term. In Appendix C, we generalize this model output to

distributions that follow the Monotone Likelihood Ratio Property (MLRP).
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2. Related Literature

There has been a growing interest within the OM community to address problems of social signifi-

cance. In particular, there has been an emerging stream of work on understanding and addressing the

challenges faced by NPOs. For comprehensive reviews of this stream, we refer the reader to Feng and

Shanthikumar (2016) and Berenguer and Shen (2020). As discussed in both these papers, there are a

myriad of challenges that NPOs face. Given our focus in this paper – resource allocation to beneficiaries

in the context of education – we restrict attention to papers that are closer to our context.

First, we review the literature in non-profit OM that studies resource management and benefits

allocation. de Véricourt and Lobo (2009) consider an NPO that also engages in for-profit activities

to subsidize their mission activities, e.g., a hospital that operates a for-profit arm and a not-for-profit

arm. They analyze how such an NPO should divide organizational resources to balance investment

(revenue generated from for-profit activities) vs. consumption (social capital gained through their

mission activities). Lien et al. (2014) consider an NPO that distributes a scarce resource, e.g., food, over

time to meet their beneficiaries’ needs, with an aim to balance equity and effectiveness of their service.

Natarajan and Swaminathan (2014) and Natarajan and Swaminathan (2017) analyze the procurement

of resources and their provision to beneficiaries when funding is limited, erratic, and unpredictable.

While the above papers take funding as a given, Devalkar et al. (2017) study a novel funding strategy

for NPOs called “ex-post” funding, where, in addition to traditional (ex-ante) fundraising, an NPO

also raises funds from donors who contribute based on the results (output) delivered by the NPO.

In particular, they analyze the optimal mix of traditional and ex-post funds for a given project, and

demonstrate its superiority over traditional fundraising. Sharma et al. (2021) analyze a closely related

funding approach called payment for results, where social investors provide upfront funding to a capital

constrained NPO. Based on the output generated, donors provide funding at the completion of the

project and social investors are paid back.

In the context of healthcare products, Atasu et al. (2017) examine organizations that recover

excess medical supplies and distribute these surpluses to underserved healthcare facilities in develop-

ing economies. Inspired by a recipient-driven model where recipients have access to full information

on inventory and availability, they analyze the value of partial information disclosure and eliminating

recipient competition. In the same realm, Zhang et al. (2020) adopt a mechanism design approach to

select recipients for medical surplus based on their reported preferences. They show that withholding

inventory information and eliciting preference rankings leads to greater value provision.

In contrast to the above papers that restrict attention to one project/initiative of an NPO, a sepa-

rate stream of work has analyzed the collection (assortment) of services/initiatives that NPOs should



Author: Not-for-Profit Support in Education
9

provide. Zhang et al. (2022) study an innovative strategy where a NPO offers partially complete prod-

ucts or services to diverse beneficiaries with heterogenous needs. They show that this can emerge as a

design strategy even in the absence of abundant resources. Arora et al. (2022) analyze an NPO’s service

portfolio and allocation of effort decisions under resource constraints, where potential beneficiaries do

not have well-specified needs. While conventional wisdom suggests that a large portfolio of services

helps meet the needs of all beneficiaries, they show that it is optimal for an NPO to offer fewer services

and invest in advisory activities when there is greater heterogeneity in the needs of the beneficiaries.

Next, a large stream of work within the OM literature has analyzed how a firm (or service provider)

should allot its scarce resources (limited inventory of goods and services) to a population of consumers.

Given our focus, we review work that has analyzed resource allocation in the absence of monetary

transfers. Swaminathan (2003) develops a decision support tool for distribution of scarce drugs free of

charge across clinics and hospitals to balance efficiency, effectiveness and equity. Closer to our work,

Gupta et al. (2023) analyze the role of non-monetary rewards in the presence of moral hazard to

encourage an agent to induce effort over the long run. They demonstrate the performance of “limited-

term” and “score-based” rewards in deterministic and stochastic environments. Several papers have

adopted a mechanism design approach to ration scarce resources to recipients with heterogeneous

valuations for the resources. Examples of this stream include Horner and Guo (2015), Balseiro et al.

(2019), Gorokh et al. (2021), Gupta et al. (2024).

From a methodological standpoint, our work adopts a principal-agent framework in the presence of

moral hazard. Contracting in the presence of moral hazard has been well studied in Economics and in

OM. Due to the extensive nature of this stream, we avoid a formal review and direct the reader to a

recent review paper by Georgiadis (2022).

We now proceed to define our base model, which studies the NPO’s resource-allocation strategy

for the case where the NPO has access to an adequate quantity of resources to support the entire

population of beneficiaries, if needed. Later, in Section 8, we will discuss the case of resource scarcity,

where the NPO has a limited quantity of resources.

3. Base Model: Allocation under Sufficient Amount of Resources

We consider the following two-period model under moral hazard, where a principal (NPO) incentivizes

an agent (student) to exert costly effort, not via monetary transfer, but through the allocation of a

superior resource. A principal has access to an abundance of two types of resources: a base-quality

resource denoted by B, and a superior resource denoted by S. Let Φ denote the set of resource types;

Φ = {B,S} (see Section 7 for an analysis with multiple resources, i.e., |Φ| ≥ 2). Let kϕ denotes the

efficacy of the resource of type ϕ∈Φ. We assume that kS >kB ≥ 0.
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In period-1, the agent exerts effort, denoted by e1 ≥ 0, and produces a stochastic output y1, where

y1 = e1 + ε1, (1)

where ε1 is an idiosyncratic noise that is normally distributed with mean 0 and variance σ2, i.e.,

ε1 ∼N
(
0, σ2

)
.

Let ψ(·|µ) and Ψ(·|µ) denote the p.d.f. and c.d.f. of the normal distribution with mean µ and variance

σ2. Further, let ψ(−)(·|µ) and ψ(+)(·|µ) denote the p.d.f. of the normal distribution with mean µ and

standard deviation σ to the left and right of the mean, respectively; we note that these functions are

invertible.

At the end of period-1, the principal provides a unit of a resource among the set Φ to the agent. Let

ϕ ∈Φ denote the type of resource provided to the agent. In period-2, the agent exerts effort denoted

by e2 ≥ 0 and produces a stochastic output y2 as follows:

y2 = kϕe2 + ε2, (2)

where ε2 is an independent zero-mean random variable, i.e., E[ε2] = 0. For any fixed e2, observe that

the superior resource leads to (stochastically) higher output than the base-quality resource.

Remark: Observe that in this model of the agent’s period-1 output, y1|e1 ∼N (e1, σ
2), the output

can be negative. For settings that require a non-negative output, we can interpret yt as a monotone

transformation of the output, e.g., yt = log(Outputt). Our analysis carries over in a straightforward

manner to such settings. ■

Before proceeding further with the description of the model below, it is important to highlight the

following three aspects we incorporate in terms of our application context, i.e., education:

(a) We model the agent’s lifetime outcome as a function of the first- and second-stage efforts to

capture the idea that a student’s early-stage efforts have a life-long positive effect (Schweinhart

2003); see Section 3.5.

(b) We model the behavioral phenomenon that agents tend to exaggerate immediate costs relative to

lifetime outcomes (referred to as hyperbolic discounting in the Behavioral Economics literature;

see, e.g., O’Donoghue and Rabin 1999, 2015) by incorporating a cost-exaggeration factor in how

they evaluate their payoff; see the factor β in (3) below. For instance, students often fail to

sufficiently recognize the lifetime impact of their current academic efforts (Bettinger and Slonim

2007, Kaur et al. 2010).
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(c) In education, a common theme of discussion in society is the necessity to value childhood happiness

and reduce student stress (Clark et al. 2020, Seror 2022). There are instances of nonprofits under-

appreciating the efforts of beneficiaries (Threlfall et al. 2013). We incorporate this theme by

including a factor in the principal’s utility function to measure the extent to which the principal

under-emphasizes a student’s cost of effort; see the factor γ in (4) below.

3.1. Payoffs

The agent’s period-t payoff, t∈ {1,2}, denoted by ũt, is as follows:

ũt(yt, et) = yt −β
( c
2
e2t

)
, (3)

where β ≥ 1 captures the agent’s exaggeration of his immediate costs. Alternatively, we can model the

agent’s period-t payoff as ũt = et−β
(
c
2
e2t
)
. In this model of the agent’s payoff, yt acts as an observable

signal of the agent’s effort and is of no intrinsic value to the agent (but has instrumental value). Our

analysis in the paper remains unaffected under this alternate model of the agent’s payoff.

The principal observes the outcome yt but not the effort exerted by the agent et in period-t. The

principal’s period-t payoff from an outcome yt and a recommended (or conjectured) effort êt is:

ṽt(yt, êt) = yt − γ
( c
2
ê2t

)
, (4)

where γ ∈ [0,1) denotes the extent to which the principal under-emphasizes the agent’s cost of effort.

Observe, from (3) and (4), that the principal does not fully internalize the agent’s cost of effort. As we

will soon show, in equilibrium, the agent finds it optimal to exert the principal’s recommended effort.

Equivalently, the principal holds rational beliefs about the agent’s effort, i.e., in equilibrium, et = êt.

Let Ũ and Ṽ denote, respectively, the agent’s and the principal’s sum of the undiscounted payoffs

across both periods, i.e., Ũ = ũ1 + ũ2, and Ṽ = ṽ1 + ṽ2. The agent and the principal are risk-neutral

and maximize the sum of the undiscounted payoffs across both periods.

3.2. Strategies

The principal’s strategy, which we denote by (ê1, α̂(·), ê2(·)), consists of the following:

(a) The principal recommends the agent an effort ê1 ∈R+ in period-1.

(b) The principal commits to a menu of probability mass functions (lotteries), α̂(·), to provide a unit

of the resource to the agent, based on the realized output in period-1. Formally,

α̂ :R 7→Υ(Φ), (5)

i.e., α̂(·) assigns a probability mass function over Φ for any output in period-1. Here, Υ(Φ) denotes

the set of all probability mass functions over Φ. Since |Φ|= 2, Υ(Φ) corresponds to all Bernoulli

distributions. Let ϕ∈Φ denote the realization of the probability mass function.
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(c) The principal recommends the agent an effort strategy ê2(·) in period-2, based on the type of

resource provided to the agent:

ê2 : Φ 7→R+.

In general, the principal’s recommended period-2 effort strategy can depend on the entire observ-

able history thus far. That is, let h2 = (y1, ϕ) and let H2 denote the set of all possible period-2

histories. Then, ê2 :H2 7→R+. However, it is straightforward to see that the only relevant part of

h2 is ϕ.

Since, in our case of Φ = {B,S}, a probability mass function corresponds to a Bernoulli distribution

(a one-parameter distribution), with a mild abuse of notation, let α̂(y1) denote the following:

α̂(y1) = P [ϕ= S|y1] , (6)

We restrict attention to α̂(·) that are integrable. The tuple (ê1, α̂(·), ê2(·)) denotes a contract. Let C

denote the set of all contracts.

The agent’s strategy, which we denote by (e1, e2(·)), consists of the following:

(a) Effort e1 ∈R+ in period-1.

(b) Effort strategy e2(·) based on the type of resource provided in period-2:

e2 : Φ 7→R+.

The sequence of events in the interaction between the principal and agent is as follows:

1. The principal proposes a contract (ê1, α̂(·), ê2(·))∈ C.

2. The agent chooses effort e1.

3. Period-1 output y1 is realized according to (1).

4. The principal provides a unit of the resource of type ϕ to the agent based on the probability mass

function (lottery) α̂(y1).

5. The agent chooses effort e2.

6. Period-2 output y2 is realized according to (2).

3.3. Principal’s Problem

Let ut = E[ũt] (resp., vt = E[ṽt]) denote the expected payoff to the agent (resp., principal) in period-t

and U = E[Ũ ] (resp., V = E[Ṽ ]) denote the expected sum of payoffs of the agent (resp., principal)

across both periods.



Author: Not-for-Profit Support in Education
13

The principal’s problem is as follows:

max
(ê1,α̂(·),ê2(·))∈C

V (ê1, α̂(·), ê2(·)) (7)

s.t. ê1 ∈ argmax
e1≥0

U(e1), (Agent’s Stage 1 Problem)

ê2(ϕ)∈ argmax
e2≥0

u2(e2;ϕ) for ϕ∈Φ. (Agent’s Stage 2 Problem)

3.4. Agent’s Period-2 Problem

At the start of period-2, the agent is provided access to either the superior resource (ϕ = S) or the

base-quality resource (ϕ=B). The agent’s period-2 problem is as follows:

max
e2∈R+

Ey2 [y2|ϕ, e2]︸ ︷︷ ︸
=kϕe2

−β
( c
2
e22

)
where y2|ϕ, e2 is shown in (2). The agent’s optimal effort in period-2 is:

e⋆2(ϕ) =
kϕ
βc
. (8)

Let u⋆
2(ϕ) denote the agent’s period-2 payoff at their optimal period-2 effort, i.e.,

u⋆
2(ϕ) = u2(e

⋆
2(ϕ);ϕ) =

k2ϕ
2βc

.

For convenience, define the agent’s payoff premium due to the superior resource as follows:

∆= u⋆
2(S)−u⋆

2(B) =
k2S − k2B
2βc

. (9)

3.5. Agent’s Period-1 Problem

The agent’s period-1 problem is as follows:

max
e1∈R+

U(e1) = u1(e1)+Ey1|e1

[
Eϕ

[
u⋆
2(ϕ)

∣∣∣y1]]
Using (1) and (9), the r.h.s. above simplifies as follows:

U(e1) =
(
e1 −β

c

2
e21

)
+Ey1|e1 [α̂(y1)u

⋆
2(S)+ (1− α̂(y1))u

⋆
2(B)]

=
(
e1 −β

c

2
e21

)
+∆

∫
y1∈R

α̂(y1)ψ
(
y1

∣∣∣e1)dy1︸ ︷︷ ︸
P[ϕ=S|e1]

+
k2B
2βc

(10)

In the r.h.s. above, the last term is a constant and independent of e1. In the second term, the integral

denotes the probability of receiving access to the superior resource if the agent exerts effort e1 in

period-1.
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3.6. Restating the Principal’s Problem

We restate the principal’s problem using the solutions to the agent’s period-2 and period-1 problems.

From the agent’s period-2 problem, it follows that the principal’s recommended period-2 strategy must

be incentive compatible to the agent, i.e., ê2(·) = e2(·) as shown in (8). We simplify the principal’s

payoff under a recommended period-1 effort ê1, menu of probability mass functions α̂(·), and the

recommended period-2 strategy ê2(·) using (8) as follows:

V (ê1, α̂(·)) = v1(ê1)+Ey1|ê1

[
Eϕ

[
v⋆2(ϕ)

∣∣∣y1]]
=
(
ê1 − γ

c

2
ê21

)
+Ey1|ê1 [α̂(y1)v

⋆
2(S)+ (1− α̂(y1))v

⋆
2(B)]

=
(
ê1 − γ

c

2
ê21

)
+∆

(
2− γ

β

)∫
y∈R

α̂(y1)ψ(y1|ê1)dy1︸ ︷︷ ︸
P[ϕ=S|e1]

+
k2B
2βc

(
2− γ

β

)
. (11)

The last term in the r.h.s. above is a constant and independent of ê1, α̂(·). By ignoring the constant

terms in (10) and (11), the principal’s problem in (7) can be written as the following bilevel optimization

problem, denoted by Problem MH (for moral hazard):

max
ê1,α̂(·)

(
ê1 − γ

c

2
ê21

)
+

(
2− γ

β

)
∆

∫
y1∈R

α̂(y1)ψ
(
y1

∣∣∣ê1)dy1
s.t. ê1 ∈ arg max

e1∈R+

(
e1 −β

c

2
e21

)
+∆

∫
y1∈R

α̂(y1)ψ
(
y1

∣∣∣e1)dy1


(Problem MH)

We say that a contract “induces” a period-1 effort e1 if e1 maximizes the agent’s payoff under the

contract.

Before we analyze Problem MH, we make an important observation. Note that the principal does

not directly benefit from holding/owning the resource. Furthermore, the agent strictly benefits from

receiving the superior resource (relative to the base-quality resource). The agent’s output in period-

2 is stochastically higher if the agent receives the superior resource than if they receive the base

quality resource, and the principal’s payoff is strictly increasing in the period-2 output. Despite these

incentives, we will show why the principal benefits in throttling access to the superior resource.

4. A Benchmark: The Free-Access Contract

Recall that our focus in Sections 3-7 is on settings where the principal has a sufficient quantity, if needed,

of the superior resource to support the entire population of beneficiaries. An important benchmark to

compare the optimal contract (i.e., solution to Problem MH, which we formulated in Section 3.6)
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is the free-access contract, where the principal always provides the agent with the superior resource.

That is, under the free-access contract, we have:

α̂(y1) = 1 for all y1 ∈R.

We denote the free-access contract by Free. For convenience, let eA denote the agent’s preferred

period-1 effort, i.e., the effort that maximizes u1:

eA =
1

βc
. (12)

The following result presents the optimal effort of the agent in period-1 under Free.

Theorem 1 (Free Access Contract). Under Free, the agent’s optimal period-1 effort is:

e⋆1 = eA.

Observe that under Free, the agent chooses their preferred period-1 effort, and hence maximizes their

period-1 payoff. Besides, the agent always receives the superior resource, thereby maximizing their

period-2 payoff. Thus, the free-access contract maximizes the agent’s payoff across both periods.

Further, observe that Free maximizes the principal’s period-2 payoff, but not their period-1 payoff.

The principal’s preferred period-1 effort, i.e., the effort that maximizes the principal’s period-1 payoff,

denoted by eP , is:

eP =
1

γc
.

The principal’s preferred period-1 effort is strictly larger than the agent’s preferred period-1 effort

(i.e., eP > eA) since the principal does not fully internalize the agent’s cost of effort and the

agent overestimates their cost of effort (γ < β). A real-world example of an NPO that, to our

knowledge, has adopted the free-access contract is Samarthanam (https://www.samarthanam.org/

livelihood-resource-center/), which works exclusively for educating disabled persons.

5. Analysis of Problem MH

We now solve for an optimal contract, i.e., identify an optimal solution to Problem MH. Recall that

a contract “induces” a period-1 effort e1 from the agent if e1 maximizes the agent’s payoff under that

contract. To develop ideas in a systematic manner, we proceed as follows:

1. We first identify the set of all inducible efforts in period-1 (Theorem 2).

2. Consider an inducible effort, say e1. Among all contracts that induce e1, we identify an optimal

contract (for the principal) that induces e1 (Theorem 3).

3. We identify the optimal period-1 effort that the principal chooses to induce (Theorem 4).

https://www.samarthanam.org/livelihood-resource-center/
https://www.samarthanam.org/livelihood-resource-center/
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Define the following efforts:

e=max

{
eA

(
1− ∆√

2πσ

)
,0

}
and e= eA

(
1+

∆√
2πσ

)
. (13)

We make the following regularity assumption, which states that the agent’s period-1 output is suffi-

ciently noisy. As we will soon demonstrate, Assumption 1 makes our analysis tractable.

Assumption 1 (σ is “Sufficiently” Large). σ > σ≜
√

∆
βc

√
2πe

.

The following result characterizes the set of inducible efforts in period-1.

Theorem 2 (Inducible Period-1 Efforts). The set of all inducible efforts in period-1 is: E =

[e, e] . Stated differently, there exists a contract that induces e1 (i.e., e1 maximizes the agent’s payoff

under that contract) if and only if e1 ∈ E.

Theorem 2 shows that the principal can induce a period-1 effort e1 from the agent iff e1 ∈ E . Recall that
Free induces a period-1 effort eA = 1

βc
. From the principal’s standpoint, any contract that induces a

period-1 effort less than eA is dominated by Free. Therefore, the equilibrium period-1 effort induced

by the principal is at least eA.

Next, we define a special class of contracts called “threshold” contracts.

5.1. Threshold Contracts

Fix τ ∈R. Consider a contract where the principal’s resource-allocation strategy α̂(·) is as follows:

α̂(y1) =

{
0, if y1 ≤ τ ;
1, if y1 > τ .

(14)

Then, the agent’s problem is as follows:

max
e1

U(e1) = u1(e1)+∆

∫ ∞

y1=τ

ψ(y1

∣∣∣e1)dy1
=
(
e1 −β

c

2
e21

)
+∆

(
1−Ψ

(
τ
∣∣∣e1)) .

Since the r.h.s. is smooth, first order conditions (f.o.c.’s) must hold at optimality. Therefore,

U ′(e1) = 0 =⇒ (1−βce1)+∆ψ (τ |e1) = 0.

The result below establishes the agent’s best-response to the above α̂(·).

Lemma 1 (Agent Best-Response to (14)). Consider α̂(·) as shown in (14). The agent’s period-1

best-response is unique and solves the following equation:

e1 = eA

(
1+∆ψ

(
τ
∣∣∣e1)) (15)

The agent’s best-response in (15) is increasing in τ if τ ≤ e and is decreasing in τ if τ > e, where e is

as defined in (13). Further, at τ = e, the agent’s best-response e1 = e.
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The fixed-point equation (15) follows from the first-order condition of the agent’s payoff. Assumption 1

ensures that the agent’s best-response – namely, the fixed point in (15) – is unique. We demonstrate

this in Figure 2.

Figure 2 Illustrating the solution to the fixed-point equation (15). Both the X-axis and Y-axis correspond to e1. The

parameter values for this figure are kS = 1, kB = 0, β = 1, c= 1, σ= 0.5. eA = 1, ∆=1, σ≈ 0.491. For these values, we

have e≈ 1.79. Observe that e1 is increasing in τ if τ < e≈ 1.79 and decreasing in τ if τ > e. The red curve corresponds

to the r.h.s. of (15) at τ = 0.9, the green (resp., orange) curve corresponds to the r.h.s. of (15) at τ = 1.75 (resp.,

τ = 2.1). The solutions to the fixed-point equation (i.e., induced first-period agent effort) are shown by dotted circles.

We now formally define a threshold contract.

Definition 1 (Threshold Contract). A threshold contract, with threshold τ ∈R, is the tuple

(ê1, α̂(·), ê2(·)), where:

(a) ê1 is the solution to (15),

(b) α̂(·) is as shown in (14), and

(c) ê2(·) is as shown in (8).

Since a threshold contract is fully specified by a single parameter τ , we will avoid referring to a threshold

contract using the tuple above, and simply refer to it as the threshold contract with the threshold τ .

Let Cthr denote the set of threshold contracts. Observe that Free∈ Cthr, where the threshold τ =−∞.

The result below characterizes the set of period-1 efforts that can be induced by threshold contracts.

Lemma 2 (Inducible Period-1 Efforts by Threshold Contracts). The set of inducible efforts

in period-1 by threshold contracts, denoted by Ethr, is:

Ethr = [eA, e] .
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Further, consider any e1 ∈ Ethr. Let τ(−) and τ(+) be defined as follows:

τ(−) = e1 +ψ−1
(−)

(
1

∆

(
e1 − eA
eA

)∣∣∣e1) and (16)

τ(+) = e1 +ψ−1
(+)

(
1

∆

(
e1 − eA
eA

)∣∣∣e1) . (17)

There are exactly two threshold contracts that induce e1: a threshold contract with threshold τ(−) and

one with threshold τ(+). Here, τ(−) ≤ τ(+), where the inequality is strict if e1 < e.

The first part of Lemma 2 follows from the second part of Lemma 1. The second part of Lemma 2

shows that there are two threshold contracts – with thresholds τ(−) and τ(+) – that induce a given

effort. Recall from (15) and Lemma 1 that the agent’s best response increases and then decreases.

After rearranging (15), we have:

ψ
(
τ
∣∣∣e1)= 1

∆

(
e1 − eA
eA

)
.

For a fixed e1 ∈ Ethr, the equation above identifies the p.d.f. value associated with τ . While both these

threshold contracts induce e1, we will show why the principal strictly prefers one of them over the

other. To do so, we first define the probability that an agent receives the superior resource under a

threshold contract with threshold τ : P [Φ = S]
∣∣∣
τ
= 1−Ψ

(
τ
∣∣∣e1), where e1 solves (15). Now, consider

an induced period-1 effort e1 ∈ Ethr, and the two thresholds τ(−) and τ(+) that induce e1 (as shown

above in Lemma 2). Observe that the r.h.s. – the probability that the agent receives the superior

resource – is larger under τ(−) than under τ(+). The principal’s payoff in period-1 is identical under the

two threshold contracts, since both contracts induce e1. However, recall that the principal’s period-2

payoff is increasing in the probability that the agent receives the superior resource. Since τ(−) leads to

a higher probability of the agent receiving the superior resource, we have the following result.

Lemma 3 (Preference Between the Two Threshold Contracts). Consider an arbitrary e1 ∈

Ethr. Suppose the principal chooses to induce a period-1 effort e1 using a threshold contract. Then,

the principal prefers a threshold contract with threshold τ(−) over that with threshold τ(+), where the

preference is strict if e1 < e. That is, V
(
τ(−)

)
≥ V

(
τ(+)

)
where the inequality is strict if e1 < e.

Note that τ(−) ≤ e; see (A.28). Thus, a consequence of Lemma 3 is that threshold contracts with

thresholds larger than e cannot arise in equilibrium, since they are dominated. Henceforth, whenever

we refer to a threshold contract that induces e1, we refer to the corresponding threshold contract with

threshold τ(−). However, it is yet to be determined if the principal chooses a threshold contract in

equilibrium. In other words, we are yet to demonstrate that an optimal solution to Problem MH is

a threshold contract. In what follows, we show the following stronger result.
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Theorem 3 (Sufficiency of Threshold Contracts). Fix e1 ∈ E, e1 ≥ eA. Suppose the principal

chooses to induce a period-1 effort e1 from the agent. Then, among the set of all contracts that induce e1,

the threshold contract that induces e1 is optimal for the principal.

Together with Lemmas 2 and 3, a consequence of Theorem 3 is that it suffices to restrict attention

to the set of threshold contracts Cthr with thresholds τ ≤ e.

In the next subsection, we restrict attention to threshold contracts and identify an optimal solution

to Problem MH, i.e., an optimal contract for the principal.

5.2. An Optimal Contract

In our search for an optimal contract, from the earlier analysis, it suffices to consider threshold contracts

with thresholds τ ≤ e. Further, from (16) in Lemma 1, observe that there is a one-to-one correspondence

between the threshold and the induced effort. Consequently, we identify the period-1 effort that the

principal chooses to induce. The corresponding threshold can be identified using (16).

Let ê1 denote the induced period-1 effort, and τ(ê1) denote the corresponding threshold (identified

from (16)). From Lemma 2, the threshold τ(ê1) is increasing in ê1, and τ(ê1)≤ ê1 where the inequality

is strict if e1 < e. We rewrite the principal’s problem as follows:

max
ê1∈Ethr

V (ê1) =

v1(ê1)︷ ︸︸ ︷(
ê1 − γ

c

2
ê21

)
+

v2(ê1)︷ ︸︸ ︷
∆

(
2− γ

β

)
1−Ψ

(
τ(ê1)

∣∣∣ê1)︸ ︷︷ ︸
P[ϕ=S]

∣∣∣
ê1

 (18)

The result below presents some useful properties of V (ê1).

Lemma 4 (Properties of V (ê1)). The following two statements hold.

(a) τ(ê1)− ê1 is increasing in ê1 ∈ Ethr.

(b) V (ê1) is strictly concave in ê1.

A consequence of Lemma 4(a) is that the probability of the agent receiving the superior resource,

1 − Ψ
(
τ(ê1)

∣∣∣ê1), is decreasing in ê1. That is, the principal induces a higher effort by “throttling”

access to the superior resource. In Lemma 4(b), it is trivial that v1(ê1) is strictly concave in ê1. The

non-trivial part is to show the concavity of the probability of the agent receiving the superior resource

in the induced effort, i.e., 1−Ψ
(
τ(ê1)

∣∣∣ê1) is concave in ê1. From Lemma 4(b), if the optimal solution
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is in the interior of Ethr, then the first-order condition is necessary and sufficient. Using Leibnitz rule,

we have:

V ′(ê1) =

marginal period-1 payoff, v′1(ê1)︷ ︸︸ ︷1− γcê1︸ ︷︷ ︸
=1− ê1

eP

 +

marginal period-2 payoff, v′2(ê1)︷ ︸︸ ︷∆

(
2− γ

β

)(
−ψ

(
τ(ê1)

∣∣∣ê1)) (τ ′(ê1)− 1)︸ ︷︷ ︸
= d
dê1

(
P[ϕ=S]

∣∣∣
ê1

)

 .

In the r.h.s. above, the first term represents the principal’s marginal period-1 payoff from an effort ê1

by the agent. Recall that eA < eP . Therefore, the principal benefits if the agent exerts a period-1 effort

larger than eA. To induce a higher effort, however, requires the principal to increase the threshold,

thereby throttling access to the superior resource (see Lemma 4(a)). This hurts the principal’s period-2

payoff, since the principal’s period-2 payoff is increasing in the probability that the agent receives

the superior resource. This tradeoff represents the inherent tension in the principal’s problem. At

optimality, the induced effort balances the principal’s gain in the period-1 payoff and their loss in the

period-2 payoff. Further simplification yields the following:

V ′(ê1) =

(
1− ê1

eP

)
−

(
2− γ

β

)
σ

eA

√
2 log

(
e−eA
ê1−eA

)
The r.h.s. in the above equation follows from (16) and from algebraic manipulation. Using the expres-

sion in the r.h.s. above, at the extremes, we have

V ′(eA) = 1− eA
eP

and V ′ (min{e, eP}) =


−∞, if e≤ eP ;

− (2− γ
β )σ

eA

√
2 log

(
e−eA
ep−eA

) , if e > eP .
Observe that V ′(eA)> 0 (since eA < eP ), and V

′(min{e, eP})< 0. Consequently, the optimal solution

is in the interior of [eA,min{e, eP}]. Since V (·) is strictly concave and V ′(eA)> 0>V ′(min{e, eP}), the
first-order condition is necessary and sufficient. Using the first-order condition, we have

V ′(ê1) = 0 =⇒ 1− ê1
eP

=

(
2− γ

β

)
σ

eA

√
2 log

(
e−eA
ê1−eA

) . (19)

After rearranging the above equation, we have the following result.

Theorem 4 (Equilibrium Period-1 Effort). In equilibrium, the period-1 effort that the principal

chooses to induce from the agent is the unique solution to the following fixed-point equation:

ê1 = eA +(e− eA) exp

−1

2


(
2− γ

β

)
σ
eA

1− ê1
eP

2
 . (20)
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Algebraically, observe that the r.h.s. in (20) is strictly decreasing in ê1, and the l.h.s. is smaller

(resp., larger) than the r.h.s. at ê1 = eA (resp., ê1 =min{e, eP}). Consequently, the above fixed-point

equation provides a unique solution in the interior of [eA,min{e, eP}]. The corresponding threshold

that the principal chooses can be expressed in terms of the induced effort using (16), as follows:

τ = ê1 +ψ−1
(−)

(
1

∆

(
ê1 − eA
eA

)∣∣∣ê1) (21)

The probability that the agent receives the superior resource in equilibrium can be expressed as follows:

P [ϕ= S]
∣∣∣
ê1

= 1−Ψ
(
τ(ê1)

∣∣∣ê1)= 1−Ψ0

(
ψ−1

0(−)

(
σ

∆

(
ê1 − eA
eA

)))
. (22)

To summarize our analysis thus far, we have established the sufficiency of restricting attention to

the class of threshold contracts (Section 5.1) and have identified an optimal contract among thresh-

old contracts (Section 5.2). An optimal contract for the principal – i.e., an optimal solution to

Problem MH – is a threshold contract where the threshold is given by (21).

6. Comparative Statics

In this section, we analyze how the optimal contract identified in Section 5 changes with the parameters

of the environment. Specifically, we provide comparative statics of two key quantities of interest – the

equilibrium effort, and the probability that the agent receives the superior resource in equilibrium –

with respect to the model parameters, namely the cost of effort, the noise in the period-1 outcome,

the efficacy of the superior resource, and the behavioral/incentive misalignment parameters.

6.1. Induced Effort

Recall that (20) provides a fixed-point equation that identifies the period-1 effort that the principal

chooses to induce in equilibrium from the agent. In the result below, we show how the induced effort

changes based on the parameters of the environment.

Theorem 5. The agent’s equilibrium period-1 effort ê1 is

(a) (Noise) decreasing in σ,

(b) (Cost of Effort) decreasing in c,

(c) (Efficacy Premium of the Superior Resource) increasing in kS and decreasing in kB,

(d) (Incentive Misalignment Parameters) decreasing in γ and β.

Part (a) shows that the principal induces a lower effort when the environment is more noisy. In a more

noisy environment, the agent’s period-1 output is less informative of their effort, and hence the agent

has a lesser incentive to exert effort. Part (b) shows that the induced effort is lower as exerting effort

becomes more costly. Part (c) shows the role of the efficacy of the superior resource. A higher efficacy
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premium leads to a greater effort. Part (d) shows the role of misalignment of incentives. If γ and β

are close to 1, then the incentives are more closely aligned. Notice that if the principal internalizes the

agent’s disutility from effort to a greater extent, the induced effort is lower.

6.2. Extent of Throttling

The extent of throttling – the probability that the agent receives the superior resource – denoted by

P[ϕ= S]
∣∣∣
ê1

, is shown in (22). Observe that this probability is decreasing in the quantity σ
∆

ê1−eA
eA

, which

is the term in the parenthesis in the r.h.s. of (22).

Theorem 6. (a) (Noise and Cost of Effort) Suppose the following holds:

cσ >
γ

β(β− γ)

k2S − k2B√
2π

.

Then, P[ϕ= S]
∣∣∣
ê1

is increasing in c and increasing in σ.

(b) (Efficacy Premium of the Superior Resource) P[ϕ= S]
∣∣∣
ê1

is increasing in kS and decreasing

in kB.

(c) (Incentive Misalignment Parameters) P[ϕ= S]
∣∣∣
ê1

is increasing in γ and decreasing in β.

Observe that the probability of receiving the superior resource is increasing in the cost of effort (c) and

in the amount of noise (σ) in the environment. This is especially surprising, considering our observation

in Theorem 5(a) and (b) that effort is decreasing in the cost of effort and the noise in the environment.

The underlying reasoning is as follows. First, for any level of stage-2 effort, the agent’s output is higher

with the superior resource, relative to that with the base-quality resource. Thus, all else being equal,

the principal prefers to provide the superior resource to the agent in period 2. Consider the effect

of σ: An increase in σ makes the agent’s period-1 output less informative of the agent’s effort, and

hence the agent has a lesser incentive to exert effort. It is convenient to consider the extreme case: In

the limit (as σ→∞), the period-1 output is uninformative of the agent’s effort. Thus, the principal is

unable to affect the agent’s period-1 effort, and hence provides the superior resource with probability 1

in period-2 (i.e., τ =−∞). While τ and ê1 both decrease in σ, the term τ − ê1 is decreasing in σ (i.e., τ

decreases at a faster rate than ê1). Consequently, the probability of the agent receiving the superior

resource is increasing in σ. A similar reasoning applies to the effect of c.

7. Extension: Multiple Types of Resources

Recall our base model in Section 3, where we assume that the principal has access to two types of

resources. We now extend the base model to a setting where the principal has access to a finite set

of two or more types of resources; i.e., |Φ| ≥ 2 but finite. Our main result in this section is that the
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analysis under multiple types of resources can be reduced to the one under two types of resources.

Consequently, it is “without loss of generality” to restrict attention to the case of two types of resources.

Let kϕ denote the efficacy of resource ϕ∈Φ. We assume that for any ϕ,ϕ′ ∈Φ, kϕ ̸= kϕ′ , i.e., no two

resources have identical efficacy. Denote the following:

ϕ≻ ϕ′ ⇔ kϕ >kϕ′ .

Thus, (Φ,≻) is an ordered set. Let ϕ (resp., ϕ) denote the unique minimal (resp., maximal) element

of Φ, i.e., the resource with the least (resp., greatest) efficacy:

ϕ= argmin
ϕ∈Φ

kϕ and ϕ= argmax
ϕ∈Φ

kϕ.

The principal’s and the agent’s payoffs are as shown in Section 3.1, and their strategies are as shown

in Section 3.2. As defined in (5), the principal’s resource-allocation strategy is a menu of probability

mass functions (i.e., lotteries), α̂(·), over the set Φ to provide a unit of the resource to the agent, based

on the realized output in period-1. With a mild abuse of notation, we denote

α̂(y1)≡
∑
ϕ∈Φ

α̂(ϕ|y1) ◦ϕ.

That is, α̂(ϕ|·) corresponds to the probability (mass) with which the agent receives the resource ϕ∈Φ

under the strategy α̂(·).

Analogous to the earlier analysis, we can write the principal’s problem in this setting, denoted by

Problem MH−Multiple as follows.

max
ê1,α̂(·)

(
ê1 − γ

c

2
ê21

)
+

(
2− γ

β

)∑
ϕ∈Φ

k2ϕ
2βc

∫
y1∈R

α̂
(
ϕ
∣∣∣y1)ψ(y1∣∣∣ê1)dy1

s.t. ê1 ∈ arg max
e1∈R+

(
e1 −β

c

2
e21

)
+
∑
ϕ∈Φ

k2ϕ
2βc

∫
y1∈R

α̂
(
ϕ
∣∣∣y1)ψ(y1∣∣∣e1)dy1


(Problem MH−Multiple)

The term
∫
y1∈R α̂

(
ϕ
∣∣∣y1)ψ(y1∣∣∣ê1)dy1 denotes the probability that the agent receives the resource of

type ϕ under the principal’s strategy α̂(·).

We say that a resource ϕ′ ∈ Φ is “irrelevant” for a menu of probability mass functions, α̂(·), if

α̂(ϕ′|y) = 0 for all y ∈ R. A set of resources Φ′ ⊂ Φ is irrelevant for α̂(·) if every resource ϕ′ ∈ Φ′ is

irrelevant for α̂(·). In words, a resource ϕ′ (resp., a set of resources Φ′) is irrelevant if the principal

does not provide the resource ϕ′ (resp., a resource from the set Φ′) under any contingency. We have

the following fundamental result.

Theorem 7 (Irrelevance of Non-Extremal Resources). In equilibrium, the set Φ \ {ϕ,ϕ} is

irrelevant.
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Theorem 7 shows that under multiple types of resources, it suffices to restrict attention to prob-

ability mass functions (lotteries) over the extremal resources. Consequently, an optimal solution to

Problem MH, where the set of resources is {ϕ,ϕ}, is also optimal for Problem MH−Multiple,

where the set of resources is a superset of {ϕ,ϕ}. Recall from the analysis in Section 5 that under two

types of resources, in equilibrium, the principal uses a threshold strategy (Theorem 3). Therefore, a

threshold strategy over the extremal resources is an optimal solution to Problem MH−Multiple.

Theorem 7 has an immediate implication for the design of resource types: when the principal has

the ability to design multiple types of resources that can be ordered in their efficacies, then it suffices

to design a menu with only the two resources that have extremal efficacies.

8. Impact of Competition and Resource Scarcity

Our base model in Section 3 and analysis thus far assumes that the NPO (principal) has a sufficient

amount of superior resources to support all beneficiaries (agents), if needed. Our intent in making this

assumption was to uncover the strategic role of throttling access the superior resources to incentivize

the agents to exert a higher effort. Nonetheless, in practice, NPOs may have fewer resources than the

population of beneficiaries they would ideally like to support. Indeed, the size of the population of

beneficiaries is often a strategic choice for an NPO.

In this section, we focus on the case where an NPO has access to fewer superior resources than

the size of the population of beneficiaries. We comment on two important questions: (i) How does

the competition among agents for scarce resources affect a principal’s resource-allocation strategy?

(ii) How should an NPO strategically choose the size of the beneficiary population? We denote the

number of superior resources available to the principal by m, and the number of agents by n. Let

[n] = {1,2, . . . , n}. We assume that m≤ n; if m≥ n, then the analysis is identical to the case of m= n,

which corresponds to our base model in Section 3.

8.1. Competition among Agents

To demonstrate the role of competition among the agents, we consider the case of one superior resource

and n agents (m= 1 and n≥ 1). Let yj1 denote the period-1 outcome of the agent j, j ∈ [n], and let

y1 = (yj1)j∈[n]. The principal’s resource-allocation strategy is as follows: Let α̂(y1) = (α̂j(y1))j∈[n] where

α̂j(y) denotes the probability that agent j receives the superior resource corresponding to period-1

output y. We require that α̂(·) belong to the n-dimensional standard (probability) simplex. Let rank(j)

denote the rank of agent j in the decreasing order of the agents’ period-1 output, where rank= 1 (resp.,

rank= n) corresponds to the index of the agent with the highest (resp., lowest) period-1 output (with
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ties broken arbitrarily). We restrict attention to threshold strategies for the principal. That is, for any

threshold τ ∈R that the principal chooses:

α̂j(y1) =

{
1, if rank(j) = 1 and yj1 ≥ τ ;

0, o/w.

In words, the principal gives the superior resource to the agent, if any, with the highest period-1

output that exceeds the threshold τ . We restrict attention to the symmetric subgame equilibria among

the agents. Consider a choice τ for the principal. Suppose agent j chooses ej1, while all other agents

choose e1. The probability that rank(j) = 1 is as follows:

P
[
agent j receives the resource

∣∣∣ej1, e1]=
∫ ∞

yj1=τ

ψ
(
yj1

∣∣∣ej1)(Ψ(yj1∣∣∣e1))n−1

dyj1.

The symmetric (subgame equilibrium) effort induced by the principal e1 satisfies the following: It is

optimal for agent j to choose ej1 = e1 if the principal chooses τ and all other agents choose e1. Formally,

e1 ∈ arg max
ej1≥0

{
u1(ej1)+∆ P

[
agent j receives the resource

∣∣∣ej1, e1]}. (23)

It is straightforward to verify that the symmetric subgame equilibrium, i.e., the solution to (23) exists

and is unique. The principal’s problem simplifies to the following:

max
τ∈R

V = nv1(e1)+∆

(
2− γ

β

)
(1− sn)

where s = P
[
yj1 ≤ τ

∣∣∣e1]=Ψ
(
τ
∣∣∣e1) and e1 solves (23).

However, solving the problem above is challenging; hence, we solve the problem numerically. We present

the outcome based on our numerical experiments in Figure 3 below.

Insight: Optimal Extent of Competition

Observe from Figure 3 that the induced effort is non-monotone in the extent of competition among

the agents. At low levels of competition (low n), the induced effort is increasing in the extent of

competition. However, at high levels of competition (high n), the induced effort is decreasing in the

extent of competition. This observation has an important implication: For the NPO, the ideal level

of competition among the agents is neither too low nor too high. Further, note that the ideal level of

competition is (a) increasing in the efficacy of the superior resource (∆) and (b) decreasing in the noise

in the period-1 outcome (σ).
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Figure 3 The effect of competition on agents’ effort: Agents’ effort increases in ∆ (traverse along rows), and

decreases in σ (traverse along columns). Ceteris paribus, at low (resp., high) values of n, agents’ effort is increasing

(resp., decreasing) in n. Recall from (12) that the effort eA maximizes an agent’s period-1 payoff. Parameter values

for this figure are: γ = 0.2, β = 1, c= 1.

8.2. Endowment of Resources

For a given population size of the beneficiaries, say n, we analyze the effect of the endowment size of

the superior resources m on the equilibrium outcome. Let yj1 denote the period-1 outcome of agent j,

j ∈ [n]. Let α̂ij(y) denote the probability that agent j receives superior resource i, i∈ [m]. As before, let

rank(j) denote the rank of agent j in the decreasing order of period-1 output (ties broken arbitrarily).

We assume that the principal uses a “ranked-threshold” contract, that we describe below. Let τ ∈ R

denote the threshold that the principal chooses. Under the “ranked-threshold” contract, the principal

adopts the following resource allocation strategy.

α̂ij(y) =

{
1, if rank(j) = i and yj1 ≥ τ ;

0, o/w.
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Put simply, the principal gives the superior resource to the m agents with the highest period-1 output,

among those whose output exceeds the threshold τ .

Suppose that the principal chooses a threshold τ , all other agents choose effort e1, and agent j

chooses ej1. The probability that agent j receives resource i is:

P
[
agent j receives resource i

∣∣∣ej1, e1] =∫ ∞

yj1=τ

ψ
(
yj1

∣∣∣ej1)(n− 1

i− 1

)(
1−Ψ

(
yj1

∣∣∣e1))i−1 (
Ψ
(
yj1

∣∣∣e1))n−i

dyj1,

For e1 to be a symmetric subgame equilibrium, we require the following:

e1 ∈ arg max
ej1≥0

{
u1(ej1)+∆

m∑
i=1

P
[
agent j receives resource i

∣∣∣ej1, e1]} . (24)

The principal’s problem simplifies to the following:

max
τ∈R

V = nv1(e1)+∆

(
2− γ

β

)(
1− sn

(
1−

(
1−s
s

)m
1−

(
1−s
s

) ))
where s = P

[
yj1 ≤ τ

∣∣∣e1]=Ψ
(
τ
∣∣∣e1) and e1 solves (24).

Solving this problem analytically is challenging, and hence we optimize numerically. For a fixed pop-

ulation of agents (i.e., fixed value of n), Figure 4 below illustrates the impact of the endowment of

superior resources (i.e., m) on agents’ effort.

Figure 4 The effect of the endowment of superior resources on agents’ effort, for a fixed agent population: Agents’

effort is increasing in m at low values of m, and is decreasing in m at high values of m. Recall from (12) that the

effort eA maximizes an agent’s period-1 payoff. The parameter values for this figure are γ = 0.2, β = 1, c= 1.
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Insight: Optimal Amount of Scarcity

Observe from Figure 4 that at high levels of scarcity (low m), agents’ effort is increasing in m. How-

ever, at low levels of scarcity (high m), agents’ effort is decreasing in m. This signifies an important

takeaway: From the viewpoint of the NPO, for a fixed population size of the beneficiaries, the extent

of scarcity of the superior resource to induce the highest effort from the beneficiaries is neither too low

nor too high.

8.3. Managing Multi-Beneficiary Pools: Dedicated vs. Pooled Resources

NPO’s often design their initiatives for multiple groups of beneficiaries. For example, Tata Trusts’

Karta Initiative operates in more than thirty schools and across six states in India (Horizons 2023). A

key question that NPO managers who design such initiatives face while managing multiple beneficiary

pools is whether they should earmark resources for each beneficiary groups, or should all beneficiaries

be pooled together? To analyze this question, we consider two beneficiary groups of equal size, say

n agents. We assume that the NPO is endowed with two superior resources (m= 2). We analyze the

outcomes under the following two scenarios:

(a) Earmarking Dedicated Resources for Each Beneficiary Group: Two distinct groups, each consisting

of m= 1 superior resource and a population of n agents.

(b) Pooling Both Beneficiary Groups: One (pooled) group, consisting of m= 2 superior resources and

a population of 2n agents.

We adopt the procedure described in Sections 8.1 and 8.2 to compute the (symmetric) equilibrium

effort of the agents and the principal’s threshold. We illustrate the agents’ effort in Figure 5 below.

Figure 5 Dedicated vs. Pooling Resources in Managing Multi-Beneficiary Pools: The blue curve corresponds to the

agents’ (symmetric) equilibrium effort when the NPO earmarks dedicated resources to each group. The orange curve

corresponds to the agents’ (symmetric) effort when the NPO manages the beneficiaries as one pool.
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Insight: To Earmark or Not to Earmark?

Recall from Sections 8.1 and 8.2 that the number of resources available and the extent of competition

affect the agents’ effort. Pooling leads to an increase in the number of resources available but also

increases the competition for these resources, while earmarking dedicated resources for beneficiary

subgroups leads to fewer available resources but also reduces competition for these resources. As shown

in Figure 5, we find that at low levels of competition (low n), the availability effect dominates, and

hence pooling induces greater effort. At high levels of competition (high n), the competition effect

dominates and hence, earmarking dedicated resources induces greater effort. This observation informs

the design of such initiatives: When faced with scarce resources, the NPO should earmark dedicated

resources and operate multiple beneficiary subgroups separately. When scarcity is less of a concern, the

NPO should pool all beneficiary subgroups.

9. Extension: Heterogenous Agent Types

Our base model assumes that agents are homogenous in their cost of effort. We now extend the model

to allow for heterogenous agents who differ in their cost of effort. Specifically, let Θ denote the set

of agent types, let θ ∈ Θ denote an agent’s (private) type, and let cθ denote the agent’s (private)

cost parameter. For simplicity, we consider the case of two types: Θ = {H,L}, where 0< cL < cH and

Φ = {B,S}. The payoff of a type-θ-agent is as shown in (10), with c replaced by cθ. The principal’s

payoff if the agent is of type θ is as shown in (11), with c replaced by cθ.

We note that this setting involves both moral hazard and adverse selection. A well-known approach

in the literature for this setting involves the use of screening mechanisms in which the principal offers an

agent a menu of contracts and each agent self-selects her choice – thus, the principal deduces the type

of each agent from that agent’s preference within her menu (Maskin and Riley 1984). However, given

our application context, namely an NPO supporting the education of underprivileged students, such

a solution would involve offering contracts that differ with the types of the agents, and will therefore

almost certainly be unacceptable in practice. Therefore, we focus on obtaining an optimal “uniform”

contract, where the principal offers one contract to agents of all types. For instance, the NPOs we

mentioned in Section 1 offer the same version of their support schemes to all intended beneficiaries.

9.1. Uniform Contract: Analysis

In the analysis below, we adopt the following notation. To denote a quantity for type θ, we append the

subscript θ to our earlier notation. For example, the period-t effort for type θ is denoted by eθt. For

the equilibrium quantities obtained in Section 5 (where the analysis was under complete information),

we also add the superscript ci. For example, the period-1 effort under complete information for a

type-θ-agent is denoted by eciθ1.
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As before, the agent’s period-2 problem is straightforward. From the analysis in Section 3.4, the

period-2 effort for an agent of type θ under resource ϕ is êθ2(ϕ) = e⋆θ2(ϕ) =
kϕ

2βcθ
. Using this, we write

the principal’s problem of obtaining an optimal uniform contract under moral hazard and adverse

selection as follows:

max
α̂(·),{êθ1}θ∈Θ

V =Eθ

v(êθ1;θ)+(2− γ

β

)
∆θ

∫
y∈R

α̂(y)ψ
(
y
∣∣∣êθ1)


s.t. êθ1 ∈ argmax

e1≥0
uθ1(e1)+∆θ

∫
y∈R

α̂(y)ψ
(
y
∣∣∣e1) ∀θ ∈Θ.


(Problem AS−Uniform)

Definition 2. A uniform threshold contract, with threshold τ ∈R is defined as follows:

1. The recommended period-1 effort to a type-θ-agent, êθ1, is the solution to (15), with eA replaced

by eAθ.

2. The principal’s resource-allocation strategy, α̂(·), is as shown in (14), for some τ ∈R.

3. The recommended period-2 effort strategy to a type-θ-agent, êθ2, is as shown in (8), with c replaced

by cθ.

Theorem 8. There exists an optimal uniform contract that is a threshold contract. That is, there

exists an optimal strategy for the principal where the resource-allocation strategy α̂(·) has the following

structure:

α̂(y) =

{
0, if y < τ ;

1, if y≥ τ .

for some τ ∈R. Further, τ ciH ≤ τ ≤ τ ciL , where τ
ci
H (resp., τ ciL) is the equilibrium value of the threshold τ

for a type-H (resp., type-L) agent in the complete-information setting in Section 5.

Below, we write the principal’s problem for identifying the optimal threshold.

max
τ ci
H
≤τ≤τ ci

L

V = Eθ

[
v(eθ1;θ)+

(
2− γ

β

)
∆θ

(
1−Ψ

(
τ
∣∣∣eθ1))]

where eθ1 = eAθ

(
1+∆θψ

(
τ
∣∣∣eθ1)) for each θ ∈Θ.

The constraint above – the best response of a type-θ agent to a threshold τ – follows from (15).

In general, V is not concave in τ ; hence, the first-order condition may not be sufficient. Neverthe-

less, the principal’s problem for an optimal threshold simplifies to a one-dimensional search in the

interval [τ ciH , τ
ci
L ].
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10. Concluding Remarks

Arguably, the most important determinant of an NPO’s effectiveness is its resource-allocation strategy.

Our work in this paper focuses on NPOs in the education sector that adopt a two-stage structure in

the allocation of resources to its beneficiaries. We demonstrate the strategic role of an NPO’s resource-

allocation strategy in incentivizing its target population of beneficiaries to exert effort. In particular,

we show why and how an NPO restricting access of its resources to the beneficiaries can result in

superior lifetime outcomes for both the beneficiaries and the NPO. Further, our results shed light on

several operational decisions that managers who design and administer such initiatives face, e.g., the

size of the beneficiary population, the size of the endowment of resources, and the value of pooling vs.

earmarking dedicated resources in managing multi-beneficiary pools.

Beyond non-profit organizations, our work is of relevance to many contexts common in OM. In

particular, in many operational environments, non-monetary incentives are employed by organizations

(e.g., firms, buyers) to induce agents (e.g., workers, suppliers) to exert effort. In such settings, the effort

exerted by agents is a strategic complement to non-monetary incentives (investments) provided by

the organization. For example, firms routinely invest in worker training (e.g., upskilling), and buyers

invest in improving suppliers’ manufacturing technology (e.g., machinery, personnel, etc.). Despite the

seemingly-beneficial role of such investments (resources) and despite their availability, we demonstrate

the importance of restricting access to such resources, and how the response from the beneficiaries

changes with the extent of competition for resources and the size of the population of beneficiaries.

Our work contributes to the growing literature on socially-responsible OM, operations in developing

economies, and non-profit OM. Apart from an NPO’s resource-allocation strategy, there are several

other key operational factors that determine the NPO’s effectiveness, such as ensuring adequate funds

and resources, managing donors, outreach and communication, workforce planning, recruiting and

reducing staff turnover, technology modernization and innovation, improving governance by engaging

board members, etc. Indeed, there has been a growing interest within the academic OM community to

address practical operational challenges in these and other related topics; see, for example, Natarajan

and Swaminathan (2014), Devalkar et al. (2017), Ata et al. (2019), Arora et al. (2022), Zhang et al.

(2022), Virudachalam et al. (2023). We believe that there are tremendous opportunities to further

develop this stream of research.
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Online Appendix for “Non-Profit Support in Education:
Resource Allocation and Students’ Lifetime Outcomes”

Appendix A: Proofs of Results in the Main Paper

For convenience of notation, we let ψ0(·) and Ψ0(·) denote the p.d.f. and c.d.f., respectively, of the standard

normal distribution, i.e., N (0,1).

A.1. Proofs of Results in Section 4

Proof of Theorem 1: Recall the definition of eA from (12). Under Free, we have α̂(y) = 1 for all y ∈ R.

Substituting for α̂(·) in (10), the agent’s expected payoff simplifies to

U(e1) =
(
e1 −β

c

2
e21

)
︸ ︷︷ ︸

u1(e1)

+u⋆2(S).

That is, the second-period payoff is u⋆2(S) and is independent of e1. Consequently, the agent’s best response, i.e.,

the effort that maximizes the period-1 payoff, is e⋆1 = eA.

Q.E.D.

A.2. Proofs of Results in Section 5

Proof of Theorem 2: Consider any α̂(·). We write the agent’s problem (ignoring the constant terms) in

Problem MH below.

max
e1≥0

(
e1 −β

c

2
e21

)
+∆

∫
y1∈R

α̂(y1)ψ
(
y1

∣∣∣e1)dy1.
Since the agent’s payoff is smooth, the first-order condition must hold at optimality. Thus, the agent’s best

response must satisfy:

1−βce1 +∆

∫
y1∈R

α̂(y1)ψ
(
y1

∣∣∣e1)(y1 − e1
σ2

)
dy1 = 0.

Rearranging the above, we have the following fixed-point equation:

e1 = eA

1+
∆

σ2

∫
y1∈R

α̂(y1)ψ
(
y1

∣∣∣e1) (y1 − e1)

︸ ︷︷ ︸
E[α̂(y1)(y1−e1)|e1]


= eA

(
1+

∆

σ2
Cov

(
α̂(y1)

∣∣∣e1, y1∣∣∣e1)) .
From Lemma B.1, it follows that smallest (resp., largest) value of the right-hand-side is e (resp., e). Consequently,

for any e1 /∈ E = [e, e], e1 cannot be a solution to the equation above, and hence cannot be induced.

Next, consider any e1 ∈ E . We will identify a contract that induces e1.

Case (i): Suppose e1 ≥ eA. Then, the “threshold” contract, as identified in Lemma 2, induces e1 (see proof of Lemma 2

below).
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Case (ii): Suppose e1 < eA. Then, for a fixed τ̂ (that we will define below), consider an “inverted threshold” contract,

as follows:

α̂(y) =

{
1, if y≤ τ̂ ;

0, o/w.

Consider the agent’s best response to the above inverted-threshold contract. The agent’s best response must

satisfy the following first-order condition:

1−βce1 −∆ψ
(
τ̂
∣∣∣e1)= 0.

Rearranging the above, the agent’s best response is the solution to the following fixed-point equation:

e1 = eA

(
1−∆ψ

(
τ̂
∣∣∣e1)) .

The best response above is unique due to Assumption 1. Stated differently, consider any e1 ∈ [e, eA). Then,

an inverted-threshold contract, with τ̂ = e1 +ψ−1
(−)

(
1
∆

(
eA−e1
eA

))
or τ̂ = e1 +ψ−1

(+)

(
1
∆

(
eA−e1
eA

))
, induces e1.

Q.E.D.

Proof of Lemma 1: Consider α(·) as shown in (14). The agent’s best-response satisfies the first-order condition

and can be written as follows:

1−βce1 −∆ψ
(
τ
∣∣∣e1)= 0 =⇒ e1 = eA

(
1+∆ψ

(
τ
∣∣∣e1)) . (A.25)

−0.5 0.5 1 1.5 2 2.5

1

2

τ1
τ2

τ3

increasing τ

e1

y = eA(1+∆ψ
(
τ
∣∣∣e1))

Figure 6 Demonstrating the fixed point equation in (A.25). Values of Parameters: c= 1, β = 1,∆=1, σ= 0.5. The

value of eA = 1 and e≈ 1.79. The red curve corresponds to τ = 1.25, purple curve corresponds to τ = e, and the orange

curve corresponds to τ = 2.25.

Note that (A.25) is a fixed-point equation. Figure 6 demonstrates this fixed-point equation for three different

values of τ . First, consider any τ ∈ R (e.g., consider one of the “curves” in Figure 6). We show that the solu-

tion to the fixed-point equation in (A.25) is unique under Assumption 1 (i.e., the point of intersection of the
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curve and the dashed line in Figure 6 is unique). Using Lemma B.2, we have that the maximum slope of the

right-hand-side of (A.25) is eA

(
∆√
2πσ2

)
. From Assumption 1, this maximum slope is less than 1. Consequently,

eA

(
1+∆ψ

(
τ
∣∣∣e1))− e1 is decreasing in e1. Furthermore, we have:

(a) At e1 = eA, the left-hand-side of (A.25) is eA, while the right-hand-side of (A.25) is strictly larger than eA;

hence,
(
eA

(
1+∆ψ

(
τ
∣∣∣e1))− e1

)∣∣∣
e1=eA

> 0.

(b) In the limit (i.e., as e1 →∞), the left-hand-side of (A.25) approaches ∞, while the right-hand-side of (A.25)

approaches eA; hence, lime1→∞

(
eA

(
1+∆ψ

(
τ
∣∣∣e1))− e1

)
< 0

It now follows immediately that the solution to (A.25) is unique, and hence the first-order condition identifies

the agent’s unique best response.

The right-hand-side of (A.25) is bounded from above by e and bounded from below by eA. From the above,

we have the following:

lim
τ→±∞

e1 = eA

e1

∣∣∣
τ=e

= e

Hence, the maximum (resp., minimum) value of e1 that can be induced is e (resp., eA).

Consider any z ∈R, and consider the following value of τ :

τ ≡ τ(z) = eA

(
1+

∆

σ
ψ0(z)

)
+σz. (A.26)

Observe that τ is strictly increasing in z due to Assumption 1, with the following:

lim
z→−∞

τ =−∞, lim
z→∞

τ =∞, τ
∣∣∣
z=0

= e.

The agent’s best response to τ in (A.26), i.e., the solution to (A.25) for τ in (A.26), is the following:

e1 = eA

(
1+

∆

σ
ψ0(z)

)
. (A.27)

In particular, e1 is increasing in z for z < 0 and decreasing in z for z > 0. Therefore, e1 is increasing in τ if τ < e,

and decreasing in τ if τ > e.

Q.E.D.

Proof of Lemma 2: Consider τ as shown in (A.26). The best response is as shown in (A.27). It follows from

the proof of Lemma 1 that for any effort e1 in the set (eA, e], there exists a finite z, and hence a τ that induces e1.

Further, Free induces eA.

Next, consider any z ∈R. Observe that the induced effort at τ = τ(z) and τ = τ(−z) (where τ is as shown in

(A.26)) is identical. Stated differently, fix e1, and consider the following values of z:

z(−) =ψ−1
0(−)

(
σ

∆

(
e1 − eA
eA

))
and z(+) =ψ−1

0(+)

(
σ

∆

(
e1 − eA
eA

))
Substituting the above values in the expression for τ in (A.26), we obtain the two thresholds as follows:

τ(−) = e1 +σz(−) and τ(+) = e1 +σz(+) (A.28)

Q.E.D.
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Proof of Lemma 3: Recall the principal’s payoff under the threshold contract in (18). Consider any e1 ∈ E ,

e1 < e. The two thresholds that induce e1 are as shown in (A.28). Since τ(−) and τ(+) induce the same effort,

the principal’s period 1 payoff is identical. In period 2, observe that the principal’s payoff is increasing in the

probability that the agent receives the superior resource. Since this probability is (strictly) higher under τ(−), i.e.,

1−Ψ
(
τ(−)

∣∣∣e1)︸ ︷︷ ︸
P[ϕ=S|τ(−)]

> 1−Ψ
(
τ(+)|e1

)︸ ︷︷ ︸
P[ϕ=S|τ(+)]

,

we have that V (τ(−))>V (τ(+)). Finally, if e1 = e, we have that τ(−) = τ(+) = e; here V (τ(−)) = V (τ(+)).

Q.E.D.

Proof of Theorem 3: Consider any ê1 ∈ E = [e, e] that the principal chooses to induce. Consider the problem

that the principal faces:

max
α̂(·)

V = v1(ê1)+∆

(
2− γ

β

)∫
y∈R

α̂(y)ψ
(
y
∣∣∣ê1)dy (A.29)

s.t. ê1 ∈ argmax
e1≥0

u1(e1)+∆

∫
y∈R

α̂(y)ψ
(
y
∣∣∣e1)dy. (A.30)

We relax the above problem by replacing the constraint with the corresponding first-order condition. That is,

we replace (A.30) by the corresponding first-order condition:

1−βcê1︸ ︷︷ ︸
u′
1(ê1)

+∆

∫
y∈R

α̂(y)ψ
(
y
∣∣∣ê1)(y− ê1

σ2

)
dy= 0. (A.31)

Indeed, the optimal solution to the problem in (A.29)-(A.30) must satisfy (A.31). Observe that in the first-order

condition (to the agent’s problem), we have interchanged the integral and the differential operators (since the

derivative of the Gaussian p.d.f. is bounded from above by 1). By replacing (A.30) with (A.31), we have the

following optimization problem:

max
α̂(·)

V = v1(ê1)+∆

(
2− γ

β

)∫
y∈R

α̂(y)ψ
(
y
∣∣∣ê1)dy

s.t. (1−βcê1)+∆

∫
y∈R

α̂(y)ψ
(
y
∣∣∣ê1)(y− ê1

σ2

)
dy= 0.

The Lagrangian can be written as follows:

L =

v1(ê1)+∆

(
2− γ

β

)∫
y∈R

α̂(y)ψ
(
y
∣∣∣ê1)dy

+λ

1−βcê1 +∆

∫
y∈R

α̂(y)ψ
(
y
∣∣∣ê1)(y− ê1

σ2

)
dy



=

∫
y∈R

ψ
(
y
∣∣∣ê1)


v1(ê1)+λ(1−βcê1)︸ ︷︷ ︸

independent of α̂(y)

+α̂(y)

2− γ

β
+λ

(
y− ê1
σ2

)
︸ ︷︷ ︸

♠O

∆

︸ ︷︷ ︸
maximize “pointwise”


dy.
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We now maximize the right-hand-side “pointwise”. That is, for each y ∈ R, we maximize the term inside the

brackets in the integrand. The first term inside the brackets is independent of α̂(y). The second term inside is

linear in α̂(y), with the coefficient ♠O∆. Thus, the optimal decision is as follows:

α̂(y) =

 1, if ♠O
(
= 2− γ

β
+λ

(
y−ê1
σ2

) )
≥ 0;

0, if ♠O
(
= 2− γ

β
+λ

(
y−ê1
σ2

) )
< 0.

(A.32)

It remains to be seen whether λ is positive or negative.

(i) Suppose λ< 0. Substituting (A.32) in (A.31), we get:∫
ê1−σ2

λ (2−
γ
β )

−∞

ψ
(
y
∣∣∣ê1)(y− ê1

σ2

)
dy = −u

′
1(ê1)

∆
.

=⇒ −

∫ −|σλ |(2− γ
β )

−∞

ψ0 (ŷ) ŷdŷ

︸ ︷︷ ︸
positive

=
u′
1(ê1)

∆
.

Since the left-hand-side is positive, it must be that ê1 < eA.

(ii) Suppose λ> 0. Applying a similar technique, i.e., substituting (A.32) in (A.31), we get:

−

∫ ∞

σ
λ(2−

γ
β )

ψ0(ŷ)ŷdŷ

︸ ︷︷ ︸
negative

=
u′
1(ê1)

∆
.

Since the left-hand-side is negative, it must be that ê1 > eA.

Since the relaxation yields a unique solution that is feasible to the original problem (in (A.29)-(A.30)), it is

optimal to (A.29)-(A.30). Hence, to induce any effort ê1 ∈ E , it suffices to restrict attention to threshold contracts.

Further, the following holds: For any t∈R, ∫ ∞

t

zψ0(z)dz =ψ0(t).

Using (ii), for any ê1 ∈ E , ê1 ≥ eA, we can write the corresponding condition as follows:

ψ0

(
σ

λ

(
2− γ

β

))
=− σ

∆
u′
1(ê1). (A.33)

Since λ> 0, observe that the condition in (A.32) can be written as follows:

α̂(y) =

{
1, if y > τ ;

0, o/w.

where τ = ê1 −
σ2

λ

(
2− γ

β

)
.

Substituting (A.33) in the above, the threshold τ can be written as:

τ = ê1 +σψ−1
0(−)

(
σ

∆

(
ê1 − eA
eA

))
︸ ︷︷ ︸

z(−)

. (A.34)

That is, to induce an effort ê1 ≥ eA, ê1 ∈ E , it is optimal for the principal to use the “threshold” lottery α̂(·) with
the threshold shown in (A.34). Q.E.D.



Author: Not-for-Profit Support in Education
A6

Proof of Lemma 4: To show part (a), observe that from (A.28), we have:

τ(ê1)− ê1 = σz(−) = σψ−1
0(−)

(
σ

∆

(
ê1 − eA
eA

))
︸ ︷︷ ︸

z(−)

.

The right-hand-side above is increasing in ê1 ∈ E = [e, e].

Next, we show part (b). Recall the expression for V (ê1) in (18). The period-1 payoff is concave in ê1. We

focus on the period-2 payoff. We ignore the constant terms and focus on the last term 1−Ψ
(
τ(ê1)

∣∣∣ê1), which
corresponds to the probability that the agent receives the superior good under ê1. This quantity is denoted by

P
[
ϕ= S

∣∣∣ê1]. Therefore, it suffices to show that P
[
ϕ= S

∣∣∣ê1] is concave in ê1.

d

dê1

(
P[ϕ= S

∣∣∣ê1]) =
d

dê1

(
1−Ψ

(
τ(ê1)

∣∣∣ê1))
=

d

dê1

(
1−Ψ0

(
ψ−1

0(−)

(
σ

∆

(
ê1 − eA
eA

))))
= − σ

∆

(
ê1 − eA
eA

)
(ψ−1

0(−))
′
(
σ

∆

(
ê1 − eA
eA

))
︸ ︷︷ ︸

ĝ
(

σ
∆

(
ê1−eA

eA

))
σ

∆eA
. (A.35)

Observe that the right-hand-side in (A.35) is negative; thus P
[
ϕ= S

∣∣∣ê1] is decreasing in ê1. Next, define ĝ(·) as

follows:

ĝ(z) = z(ψ−1
0(−))

′(z). (A.36)

The right-hand-side in (A.35) can be written as −ĝ
(
σ
∆

(
ê1−eA
eA

))
σ

∆eA
. To show that P

[
ϕ= S

∣∣∣ê1] is concave

in ê1, it suffices to show that ĝ(·) is an increasing function. We show this in Lemma B.3. Our result then follows.

Q.E.D.

Proof of Theorem 4: Using the first-order condition from (19), we have:

V ′(ê1) = 0 =⇒ 1− ê1
eP

=

(
2− γ

β

)
σ

eA

√
2 log

(
e−eA
ê1−eA

) .

=⇒ log

(
e− eA
ê1 − eA

)
=

1

2


(
2− γ

β

)
σ
eA

1− ê1
eP

2

.

=⇒ e− eA
ê1 − eA

= exp

1

2


(
2− γ

β

)
σ
eA

1− ê1
eP

2
 .

=⇒ ê1 = eA+(e− eA) exp

−1

2


(
2− γ

β

)
σ
eA

1− ê1
eP

2
 .

Q.E.D.
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A.3. Proofs of Results in Section 6

Proof of Theorem 5: Using the definition of e, we rewrite the induced effort in (20) below:

ê1 = eA+(e− eA) exp

−1

2


(
2− γ

β

)
σ
eA

1− ê1
eP

2


= eA

1+
∆√
2πσ

exp

−1

2


(
2− γ

β

)
σ
eA

1− ê1
eP

2

 . (A.37)

We show each part below. Recall from Theorem 4 that the fixed-point equation (A.37) has a unique solution.

(a) Consider the right-hand-side in (A.37). Recall that this expression is decreasing in ê1 and also decreasing

in σ. Hence, the solution to ê1 in (A.37) is decreasing in σ.

(b) Similar to (a), the right-hand-side is decreasing in c since eA and ∆ are decreasing in c. Hence, the solution

to ê1 in (A.37) is decreasing in c.

(c) Similar to (a), the right-hand-side is increasing in kS and decreasing in kB, since ∆ is increasing in kS and

decreasing in kB. Hence, the solution to ê1 in (A.37) is increasing in kS
kB

.

(d) To show the comparative static of ê1 with respect to γ, we first observe that the term
(2− γ

β
) σ
eA

1− ê1
eP

is increasing

in γ. To see this, observe that:

d

dγ

(
(2− γ

β
) σ
eA

1− ê1
eP

)
=

σc(
1− ê1

eP

)2 (2 ê1eA − 1

)
> 0.

The right-hand-side of (A.37) is decreasing in this term; hence ê1 is decreasing in γ. To show the comparative

static of ê1 with respect to β, observe that the right-hand-side is decreasing in β; hence, ê1 is decreasing in β.

Q.E.D.

Proof of Theorem 6: Recall from (22) that the probability that the agent receives the good is:

P[ϕ= S]
∣∣∣
ê1

= 1−Ψ0

(
ψ−1

0(−)

(
σ

∆

ê1 − eA
eA

))
.

Let ξ⋆ denote the following:

ξ⋆ ≜
σ

∆

ê1 − eA
eA

.

The probability P[ϕ= S] = 1−Ψ0

(
ψ−1

0(−)(ξ
⋆)
)
is decreasing in ξ⋆. It suffices to analyze how ξ⋆ changes with the

model parameters. We can write (A.37) as follows:

ξ⋆ =
1√
2π

exp

−1

2


(
2− γ

β

)
σβc

1− γ

β

(
1+ ξ⋆

k2
S
−k2

B

2βcσ

)
2
 .

Note that this is a fixed-point equation in ξ⋆. Let cσ= ĉ, γ

β
= γ̂, k̂=

k2S−k2B
2

. Then,

ξ⋆ =
1√
2π

exp

−1

2

 (2− γ̂)βĉ

1− γ̂(1+ ξ⋆k̂

βĉ
)︸ ︷︷ ︸

=♣O


2 . (A.38)
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The right-hand-side of (A.38) is smooth and decreasing in ξ⋆. Consider any model primitive. The effect of the

model primitive on ξ⋆ can be written as:

dξ⋆

d(model primitive)
=

∂(r.h.s. of (A.38))

∂(model primitive)

1− ∂(r.h.s. of (A.38))

∂ξ⋆

. (A.39)

Since the right-hand-side of (A.38) is decreasing in ξ⋆, the denominator of the right-hand-side of (A.39) is

positive; hence, it suffices to analyze the numerator of the right-hand-side in (A.39). Further, the right-hand-

side of (A.38) is decreasing in the quantity (2−γ̂)βĉ

1−γ̂(1+ ξ⋆k̂
βĉ

)
, denoted by ♣O. Hence, to analyze the numerator of the

right-hand-side in (A.39), we analyze ♣O.

To show part (a), we identify conditions such that ♣O is increasing in ĉ.

d♣O
dĉ

=
(2− γ̂)β2ĉ(

1− γ̂
(
1+ ξ⋆k̂

βĉ

))2
(
1− γ̂

(
1+2

ξ⋆k̂

βĉ

))
.

Recall that
(
1− γ̂

(
1+ ξ⋆k̂

βĉ

))
> 0. However, we need a stronger condition for

(
1− γ̂

(
1+2 ξ

⋆k̂

βĉ

))
> 0. We consider

the following sufficient condition:

ĉ >
2γ̂

1− γ̂

k̂

β

1√
2π
.

The condition in the statement of Theorem 6 is equivalent to the condition above.

Part (b) is straightforward because ♣O is increasing in k̂; hence, the right-hand-side of (A.38) is decreasing

in k̂. Consequently, ξ⋆ is decreasing in k̂, and hence P[ϕ= S] is increasing in k̂.

In part (c), the comparative static with respect to γ is straightforward: Observe that

d♣O
dγ̂

=
βĉ(

1− γ̂
(
1+ ξ⋆k̂

βĉ

))2
(
1+

2ξ⋆k̂

ĉ

)
.

Since the right-hand-side is positive, the solution to ξ⋆ is decreasing in γ̂, and hence P[ϕ= S] is increasing in γ̂.

Consequently, P[ϕ= S] is increasing in γ. Q.E.D.

A.4. Proofs of Results in Section 7

Proof of Theorem 7: Consider a set of resources Φ, where kϕ, denotes the efficacy of resource ϕ∈Φ. Consider

the principal’s problem as shown in Problem MH−Multiple. Consider an arbitrary ê1 ≥ 0. We identify an

optimal contract that induces ê1. We adopt an identical “first-order” approach as in the proof of Theorem 3.

That is, we replace the constraint in Problem MH−Multiple – the agent’s optimization problem – with the

corresponding first-order condition.

For any ϕ∈Φ, define ∆ϕ as follows:

∆ϕ =
k2ϕ− k2ϕ

2βc
.

The ratio ∆ϕ (analogous to ∆) denotes the efficacy premium of resource ϕ relative to ϕ. After substituting the

above in Problem MH−Multiple and ignoring the constant terms, the principal’s problem is as follows:

max
{α̂(ϕ|·)}ϕ∈Φ\{ϕ}

V = v1(ê1)+

(
2− γ

β

) ∑
ϕ∈Φ\{ϕ}

∆ϕ

∫
y∈R

α̂
(
ϕ
∣∣∣y)ψ(y∣∣∣ê1)dy

s.t. u′
1(ê1)+

∑
ϕ∈Φ\{ϕ}

∆ϕ

∫
y∈R

α̂
(
ϕ
∣∣∣y)ψ(y∣∣∣ê1)(y− ê1

σ2

)
dy= 0.



Author: Not-for-Profit Support in Education
A9

We write the Lagrangian below.

L = v1(ê1)+

(
2− γ

β

) ∑
ϕ∈Φ\{ϕ}

∆ϕ

∫
y∈R

α̂
(
ϕ
∣∣∣y)ψ(y∣∣∣ê1)dy +

λ

u′
1(ê1)+

∑
ϕ∈Φ\{ϕ}

∆ϕ

∫
y∈R

α̂
(
ϕ
∣∣∣y)ψ(y∣∣∣ê1)(y− ê1

σ2

)
dy


=

∫
y∈R

ψ
(
y
∣∣∣ê1)dy


v1(ê1)+λu′

1(ê1)︸ ︷︷ ︸
independent of α̂(·)

+
∑

ϕ∈Φ\{ϕ}

∆ϕα̂
(
ϕ
∣∣∣y)(2− γ

β
+λ

(
y− ê1
σ2

)) .

Maximizing the above “pointwise”, i.e., at each y, it suffices to maximize the term in the brackets above. Since

the first term in the brackets is independent of the control α̂(·), it suffices to focus on the second term. Here, we

have a linear program of the following form:∑
ϕ∈Φ\{ϕ}

α̂(ϕ|y)∆ϕ

(
2− γ

β
+λ

(
y− ê1
σ2

))
s.t.

∑
ϕ∈Φ\{ϕ}

α̂(ϕ|y)≤ 1, α̂(ϕ|y)∈ [0,1].

Since 0≤∆ϕ <∆ϕ for all ϕ∈Φ \ {ϕ}, it follows that:

α̂
(
ϕ
∣∣∣y) =

{
1, if 2− γ

β
+λ

(
y−ê1
σ2

)
> 0;

0, o/w.
(A.40)

α̂
(
ϕ
∣∣∣y) = 0 for all ϕ∈Φ \ {ϕ,ϕ}.

Using a similar approach as in Theorem 3 – substituting (A.40) in the first-order condition above – we can show

that for any ê1 ≥ eA, we have that λ> 0. Therefore, a “threshold” lottery, that places a mass of 1 on resource ϕ

if y > ê1 − σ2

λ

(
2− γ

β

)
and a mass of 1 on resource ϕ otherwise, is optimal. Q.E.D.

A.5. Proofs of Results in Section 9

Proof of Theorem 8: We write Problem AS−Uniform as follows:

max
α̂(·),{êθ1}θ∈Θ

V =
∑
θ∈Θ

fθ

v1(êθ1;θ)+(2− γ

β

)
∆θ

∫
y∈R

α̂(y)ψ
(
y
∣∣∣êθ1)dy


s.t. êθ1 ∈ argmax

e1≥0

uθ1(e1)+∆θ

∫
y∈R

α̂(y)ψ
(
y
∣∣∣êθ1)dy

 for each θ ∈Θ.

We adopt the first-order approach as before, and replace the constraint for each agent type θ ∈Θ in the problem

above with the corresponding first-order condition. We then have the following problem:

max
α̂(·),{êθ1}θ∈Θ

V =
∑
θ∈Θ

fθ

v1(êθ1;θ)+(2− γ

β

)
∆θ

∫
y∈R

α̂(y)ψ
(
y
∣∣∣êθ1)dy


s.t. 1−βcθêθ1︸ ︷︷ ︸

u′
θ1

(êθ1)

+∆θ

∫
y∈R

α̂(y)ψ
(
y
∣∣∣êθ1)(y− êθ1

σ2

)
= 0 for each θ ∈Θ.
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We write the Lagrangian as follows:

L =
∑
θ∈Θ

fθ

v1(êθ1;θ)+(2− γ

β

)
∆θ

∫
y∈R

α̂(y)ψ
(
y
∣∣∣êθ1)dy

 +

∑
θ∈Θ

λθ

1−βcθêθ1 +∆θ

∫
y∈R

α̂(y)ψ
(
y
∣∣∣êθ1)(y− êθ1

σ2

)
=
∑
θ∈Θ

∫
y∈R

ψ
(
y
∣∣∣êθ1)dy [(fθv1(êθ1;θ)+λθ (1−βcθêθ1))+ α̂(y)

(
∆θ

(
fθ

(
2− γ

β

)
+λθ

(
y− êθ1
σ2

)))]

=

∫
y∈R

(∑
θ∈Θ

ψ
(
y
∣∣∣êθ1) (fθv1(êθ1;θ)+λθ (1−βcθêθ1))

)
dy

︸ ︷︷ ︸
independent of α̂(y)

+

∫
y∈R


∑
θ∈Θ

ψ
(
y
∣∣∣êθ1)∆θ

(
fθ

(
2− γ

β

)
+λθ

(
y− êθ1
σ2

))
︸ ︷︷ ︸

⋆O

 α̂(y)dy.

It suffices to focus on the second term. It follows that

α̂(y) =

{
1, if ⋆O≥ 0;

0, if ⋆O< 0,

where

⋆O=
∑
θ∈Θ

fθ∆θψ0

(
y− êθ1
σ

)(
2− γ

β
+

λθ
fθσ

(
y− êθ1
σ

))
.

Below, we analyze ⋆O.

Let ŷ= y−êL1

σ
, and δê =

êL1−êH1

σ
. Then, we can write ⋆O as follows:

⋆O= fL∆Lψ0(ŷ)

(
2− γ

β
+

λL
fLσ

ŷ

)
+ fH∆Hψ0(ŷ+ δê)

(
2− γ

β
+

λH
fHσ

(ŷ+ δê)

)
.

From Lemma B.4, it follows that if λL, λH > 0, ⋆O single-crosses from below. That is, there exists a unique

solution to y at which ⋆O= 0, and to the left (resp., right) of this point, ⋆O is negative (resp., positive). Q.E.D.
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Appendix B: Helpful Results

Below, we state and prove some results that are useful for the proofs of our main results in the paper.

B.1. Useful Results on Gaussian Random Variables

Lemma B.1. Suppose X ∼N (µ,σ2). Consider any function f :R 7→ [0,1]. Then,

− σ√
2π

≤E[f(X)(X −µ)]≤ σ√
2π
.

Proof: Since f(x)∈ [0,1] for any x∈R, for any random variable X, it follows that:

E[(X −µ)−]≤E[f(X)(X −µ)]≤E[(X −µ)+].

Since X ∼N (µ,σ2), we have:

− σ√
2π

≤E[f(X)(X −µ)]≤ σ√
2π
.

Q.E.D.

Lemma B.2. Suppose X ∼N (0,1). Then,

−1≤ψ′
0(x)≤ 1

Proof: Observe that

ψ′
0(x) =−ψ0(x)x.

Note that ψ′
0(−x) =−ψ′

0(x). Also, ψ′
0(x) is positive iff x < 0. Further, ψ′

0(x) is quasiconcave. Hence, the first-

order-condition suffices. Using the first-order-condition, we have:

ψ′′
0 (x) = 0 =⇒ x=±1.

Substituting the above, we have the required result.

Q.E.D.

B.2. Some Useful Functions and Their Properties

Recall the definition of ĝ(z) from (A.36):

ĝ(z) = z(ψ−1
0(−))

′(z).

Lemma B.3. ĝ(z) is increasing in z.

Proof: Since ψ−1
0(−)(z) =−

√
2 log

(
1√
2πz

)
, we have:

ĝ′(z) = −z

(√
2 log

(
1√
2πz

))′

=
1√

2 log
(

1√
2πz

) (> 0) .

Hence, ĝ(·) is increasing.

Q.E.D.
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Consider any positive numbers ai, bi for i∈ {1,2}. Let r̂i(z) denote the following function:

r̂i(z) = (ai+ biz)ψ0(z).

Consider a positive number ϵ. Let R(z) denote the following:

R(z) = r1(z)+ r2(z+ ϵ)

= ψ0(z)

(a1 + b1z)+ (a2 + b2(z+ ϵ))
ψ0(z+ ϵ)

ψ0(z)︸ ︷︷ ︸
≜ρ(z)

 .

Lemma B.4. R(z) is single-crossing in z from below.

Proof: First, observe that r̂i(z) single-crosses 0 from below, with a unique root at z =−ai
bi
. Next, one of two

cases arises:

(i) −
(
a2
b2

+ ϵ
)
≤−a1

b1
.

(ii) −a1
b1
<−

(
a2
b2

+ ϵ
)
.

Consider part (i). Observe that for i∈ {1,2}, ri(z)< 0 if z ≤−
(
a2
b2

+ ϵ
)
, and ri(z)> 0 if z ≥−a1

b1
. Consider some

ẑ ∈
(
−
(
a2
b2

+ ϵ
)
,−a1

b1

)
. Suppose that at z = ẑ, R(ẑ) > 0. We will show that for any δ > 0, R(ẑ + δ) > 0. Since

R(ẑ)> 0, it must be the case that ρ(ẑ)> 0. We write R(ẑ+ δ) as follows:

R(ẑ+ δ) = r1(ẑ+ δ)+ r2(ẑ+ δ+ ϵ)

= ψ0(ẑ+ δ)ρ(ẑ+ δ)

= ψ0 (ẑ+ δ)

ρ(ẑ)+ b1δ+ b2δ
ψ0(ẑ+ δ+ ϵ)

ψ0(ẑ+ δ)
+ (a2 + b2(ẑ+ ϵ))

(
1− eδϵ

)
e−ϵ(ẑ+δ+

ϵ
2
)︸ ︷︷ ︸

ρ(ẑ+δ)

 .

The right-hand-side is positive, since each term inside the brackets is positive; hence R(ẑ+ δ)> 0. An identical

approach applies to (ii).

Q.E.D.
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Appendix C: A Generalization of the Model in Section 3

We consider the following more-general version of the problem described in the main paper. Let y1 ∈ Y ⊆ R

where Y is compact. Let the p.d.f. and c.d.f of y1|e1 be the following:

y1

∣∣∣e1 ∼ψ
(
·
∣∣∣e1) ,Ψ(·∣∣∣e1) .

We assume that y1|e1 satisfies the strict Monotone Likelihood Ratio Property (MLRP). That is, let

l
(
y
∣∣∣e)= ψe

(
y
∣∣∣e)

ψ
(
y
∣∣∣e) .

We assume that l(y|e) is strictly increasing in y.

Let ṽt(yt, et) and ũ(yt, et) denote, respectively, the period-t payoff of the principal and the agent from an

outcome yt and agent effort et. Let v1(e1) and u1(e1) denote, respectively, denote the principal’s and the agent’s

expected period-1 payoff from an agent effort e1. That is,

v1(e1) =Ey1|e1 [ṽ1(y1, e1)] and u1(e1) =Ey1|e1 [ũ1(y1, e1)] .

We assume that v1(·) and u1(·) are single peaked, and u1(·) is strictly concave. Let eP and eA denote, respectively,

the preferred period-1 efforts of the principal and agent. We assume eP > eA.

Let Φ denote the finite set of resources available to the principal. In period 2, let e⋆2(ϕ) denote the agent’s

optimal effort if the agent is provided with resource ϕ∈Φ. That is,

e⋆2(ϕ) = argmax
e2≥0

Ey2|e2 [ũ2(y2, e2, ϕ)] .

If the right-hand-side is not singleton, then we let e⋆2(ϕ) denote the principal’s preferred effort. Let

v2(ϕ) =Ey2|e2 [ṽ(y2, e
⋆
2(ϕ), ϕ)] and u2(ϕ) =Ey2|e2 [ũ(y2, e

⋆
2(ϕ), ϕ)].

We assume that the principal and the agent have identical preferences over Φ in the following manner. Consider

ϕ,ϕ′ ∈Φ:

u2(ϕ)≥ u2(ϕ
′)⇔ v2(ϕ)≥ v2(ϕ

′).

Consequently, we say that ϕ≻ ϕ′ (ϕ is “preferred” or “superior” to ϕ′) if the principal and the agent’s period-2

expected payoffs under ϕ are larger than under ϕ′. Let ϕ and ϕ denote the most-preferred and least-preferred

resource. Without loss of generality, we assume that for ϕ ̸= ϕ′, either u2(ϕ) ̸= u2(ϕ
′) or v2(ϕ) ̸= v2(ϕ

′), or both.

For any resource ϕ∈Φ, define the strict upper (resp., lower) resource set following:

SURS(ϕ) = {ϕ′ ∈Φ : ϕ′ ≻ ϕ}.

SLRS(ϕ) = {ϕ′ ∈Φ : ϕ≻ ϕ′}.

Indeed, SURS(ϕ) = SLRS(ϕ) = ∅. For any resource ϕ and any ϕ′ ∈ SLRS(ϕ), define r(ϕ||ϕ′) as follows:

r (ϕ||ϕ′) =
v2(ϕ)− v2(ϕ

′)

u2(ϕ)−u2(ϕ′)
.
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The ratio r(ϕ||ϕ′) measures the preference of the resource ϕ to ϕ′ for the principal relative to the agent. The

principal’s problem can be written as follows:

max
{α̂(ϕ|·)}ϕ∈Φ,ê1

V = v1(ê1)+
∑
ϕ∈Φ

v2(ϕ)

∫
y∈R

α̂
(
ϕ
∣∣∣y)ψ(y∣∣∣ê1)dy

ê1 ∈ argmax
e1≥0

u1(e1)+
∑
ϕ∈Φ

u2(ϕ)

∫
y∈R

α̂
(
ϕ
∣∣∣y)ψ(y∣∣∣e1)dy.

Fix an effort, say ê1, ê1 ≥ eA that can be induced.1 We identify an optimal contract that induces ê1.

As before, we adopt the first-order approach, i.e., we replace the constraint with the agent’s first-order condi-

tion. We have the following problem, denoted by Problem P(ê1):

max
{α̂(ϕ|·)}ϕ∈Φ

V = v1(ê1)+
∑
ϕ∈Φ

v2(ϕ)

∫
y∈R

α̂
(
ϕ
∣∣∣y)ψ(y∣∣∣ê1)dy

s.t. u′
1(ê1)+

∑
ϕ∈Φ

u2(ϕ)

∫
y∈R

α̂
(
ϕ
∣∣∣y)ψe (y∣∣∣ê1)dy= 0.


(Problem P(ê1))

The Lagrangian can be written as follows:

L=

∫
y∈R

ψ
(
y
∣∣∣ê1)

(v1(ê1)+λu′
1(ê1))+

∑
ϕ∈Φ

α̂
(
ϕ
∣∣∣y1)(v2(ϕ)+λu2(ϕ)l

(
y1

∣∣∣ê1))︸ ︷︷ ︸
⋆O

dy.

We maximize the term inside the brackets in the right-hand-side “pointwise”. It suffices to focus on the term

denoted by ⋆O. This results in following linear program:

max
{α̂(·|y1)}ϕ∈Φ

∑
ϕ∈Φ

α̂
(
ϕ
∣∣∣y1)(v2(ϕ)+λu2(ϕ)l

(
y1

∣∣∣ê1))
s.t

∑
ϕ∈Φ

α̂
(
ϕ
∣∣∣y1)= 1, α̂

(
ϕ
∣∣∣y1)∈ [0,1].

We can show that, at optimality, λ> 0. We have the following result.

Theorem C.1. At any y1, a degenerate lottery arises. That is, for any y1 and any ϕ∈Φ, α̂(ϕ|y1)∈ {0,1}.

Proof: The problem above is a linear program over the probability simplex of the [0,1]|Φ| hypercube. Thus,

there exists an optimal solution at a corner point and any such solution corresponding to a degenerate lottery.

Q.E.D.

The above result states that, for any given output, there exists an optimal solution in which there is no mixing

of resources.

1 The set of efforts that can be induced is bounded.
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C.1. Two Types of Resource (|Φ|= 2)

Suppose |Φ|= 2, i.e., Φ = {ϕ,ϕ}. We have the following result.

Theorem C.2. If |Φ|= 2, then

α̂
(
ϕ
∣∣∣y)=

 1, if y≥ l−1

(
− r(ϕ||ϕ)

λ

∣∣∣ê1);
0, o/w.

Proof: Resource ϕ is provided w.p. 1 iff following condition holds:

v2(ϕ)+λu2(ϕ)l
(
y1

∣∣∣ê1) ≥ v2(ϕ)+λu2(ϕ)l
(
y1

∣∣∣ê1)
=⇒ l

(
y1

∣∣∣ê1) ≥ − 1

λ
r(ϕ||ϕ).

Since l(·|ê1) is strictly increasing, we have the claimed result. Q.E.D.

Thus, if |Φ|= 2, to induce any effort ê1, an optimal contract is a threshold contract. Consequently, in equilibrium,

the principal uses a threshold contract. Indeed, in Section 5, l(y|e) = y−e
σ2 and r(ϕ||ϕ) = 2− γ

β
. Hence, the threshold

condition simplifies to y≥ e1 − σ2

λ

(
2− γ

β

)
as shown in (A.32).

To solve for λ (for a given ê1), let ∆u = u2(ϕ)−u2(ϕ). Substituting the above solution in the agent’s first-order

condition, we have: ∫ ∞

y=l−1

(
−
r(ϕ||ϕ)

λ

∣∣∣ê1)ψe
(
y
∣∣∣ê1)dy=−u

′
1(ê1)

∆u

. (solution to λ for given ê1)

Further, one can confirm from the above that λ> 0 for any ê1 > eA since u′
1(ê1)< 0 for ê1 > eA.

Let ∆v = v2(ϕ)− v2(ϕ). The principal’s optimization problem simplifies to the following single-dimensional

optimization problem:

max
ê1

V = v1(ê1)+∆v

(
1−Ψ

(
τ(ê1)

∣∣∣ê1))
where

∫ ∞

y=τ(ê1)

ψe

(
y
∣∣∣ê1)dy=−u

′
1(ê1)

∆u

.

For any ê1, the constraint above identifies τ(ê1). The problem above identifies the optimal induced effort.

C.2. Multiple Types of Resources (|Φ| ≥ 3)

Suppose |Φ| ≥ 3, i.e., {ϕ,ϕ}⊊Φ. For any ê1, define the following:

y
ϕ
(ê1) = l−1

(
− 1

λ
min

ϕ′∈SLRS(ϕ)
r(ϕ||ϕ′)

∣∣∣ê1) and (C.41)

yϕ(ê1) = l−1

(
− 1

λ
max

ϕ′∈SURS(ϕ)
r(ϕ′||ϕ)

∣∣∣ê1) . (C.42)

Since SURS(ϕ) = SLRS(ϕ) = ∅, we let y
ϕ
(ê1) =−∞ and yϕ(ê1) =∞. Observe that y

ϕ
(ê1) (resp., yϕ(ê1)) is finite

for any ϕ ̸= ϕ (resp., ϕ ̸= ϕ). Let Yϕ(ê1) denote the following:

Yϕ(ê1) = (y
ϕ
(ê1), yϕ(ê1)].
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The sets Yϕ(ê1) and Yϕ(ê1) are non-empty. For ϕ /∈ {ϕ,ϕ}, the set Yϕ(ê1) is non-empty iff the following holds:

max
ϕ′∈SURS(ϕ)

r (ϕ′||ϕ)< min
ϕ′∈SLRS(ϕ)

r (ϕ||ϕ′) . (C.43)

Define the following:

Φrelevant = {ϕ,ϕ}∪ {ϕ : ϕ satisfies (C.43)}

Observe that (C.43) does not depend on ê1. Therefore, a resource ϕ∈Φrelevant is relevant for any e1, and hence for

the equilibrium effort e1. Loosely, condition (C.43) holds for resource ϕ if the principal has a “stronger preference”

for resource ϕ relative to the agent. Let Φirrelevant =Φ \Φrelevant. We have the following result:

Theorem C.3. If |Φ| ≥ 3, then,

α̂
(
ϕ
∣∣∣y1)={ 1, if y ∈Yϕ(ê1);

0, o/w.

Proof: From Theorem C.1, we have that at any y1, there exists ϕ s.t. α̂(ϕ|y1) = 1, and for all ϕ′ ∈ Φ \ {ϕ},
α̂(ϕ′|y1) = 0. For a resource ϕ to be provided, we require that:

v2(ϕ)+λu2(ϕ)l
(
y
∣∣∣ê1) > max

ϕ′∈Φ\{ϕ}
v2(ϕ)+λu2(ϕ)l

(
y
∣∣∣ê1)

=⇒ (vϕ− vϕ′)+λl
(
y
∣∣∣ê1) (uϕ−uϕ′) > 0 for each ϕ∈Φ

=⇒ l
(
y
∣∣∣ê1)<−r (ϕ

′||ϕ)
λ

for ϕ′ ∈ SURS(ϕ) and l
(
y
∣∣∣ê1)>−r(ϕ||ϕ

′)

λ
for ϕ′ ∈ SLRS(ϕ).

Since l(·|ê1) is strictly increasing, we get the claimed result. Q.E.D.

In particular, observe that for any ϕ ∈Φirrelevant, we have that α̂(ϕ|y1) = 0 for all y1, i.e., the resource ϕ is never

provided. Further, the set of output levels Yϕ(ê1) where resource ϕ is provided is a contiguous set (i.e., no holes).

Also, for any ϕ,ϕ′ that are relevant and any ê1, Yϕ(ê1)∩Yϕ′(ê1) = ∅.

In our analysis in Section 7, observe that r(ϕ||ϕ′) = 2 − γ

β
. Hence, Φrelevant = {ϕ,ϕ}. Indeed, if r(ϕ||ϕ′) is a

constant for all ϕ′ ∈ SLRS(ϕ), ϕ∈Φ \ {ϕ}, then, Φrelevant = {ϕ,ϕ}.

Lemma C.1. Consider two resources ϕ,ϕ′ /∈ {ϕ,ϕ} and any inducible effort ê1. Suppose ϕ
′ ≻ ϕ. Then,

yϕ(ê1)≤ y
ϕ′(ê1). (C.44)

Proof: Consider two resources ϕ,ϕ′ where ϕ′ ≻ ϕ and an inducible effort ê1. By definition, the following holds:

min
ϕ̂∈SLRS(ϕ′)

r(ϕ′||ϕ̂)≤ r(ϕ′||ϕ)≤ max
ϕ̂∈SURS(ϕ)

r(ϕ̂||ϕ).

Recall Problem P(ê1), the principal’s problem that identifies the resource-allocation strategy to induce ê1. In

Problem P(ê1), λ> 0 at optimality. Therefore, from above,

− 1

λ
min

ϕ̂∈SLRS(ϕ′)
r(ϕ′||ϕ̂)≥− 1

λ
max

ϕ̂∈SURS(ϕ)
r(ϕ̂||ϕ).

Recall that l(y|e) is increasing in y for any e (by assumption). Therefore, we have:

l−1

(
− 1

λ
min

ϕ̂∈SLRS(ϕ′)
r(ϕ′||ϕ̂)

∣∣∣ê1) ≥ l−1

(
− 1

λ
max

ϕ̂∈SURS(ϕ)
r(ϕ̂||ϕ)

∣∣∣ê1) .
From (C.41) and (C.42), the above condition is the same as y

ϕ′(ê1)≥ yϕ(ê1), which is the required inequality.

Q.E.D.

The implication from the result above is that the resource allotted is “monotone” in y1. That is, a higher period-1

output results in a (weakly) superior resource.


	Introduction
	Research Questions and Main Results
	Related Literature
	Base Model: Allocation under Sufficient Amount of Resources
	Payoffs
	Strategies
	Principal's Problem
	Agent's Period-2 Problem
	Agent's Period-1 Problem
	Restating the Principal's Problem
	A Benchmark: The Free-Access Contract
	Analysis of Problem MH
	Threshold Contracts
	An Optimal Contract


	Comparative Statics
	Induced Effort
	Extent of Throttling


	Extension: Multiple Types of Resources
	Impact of Competition and Resource Scarcity
	Competition among Agents
	Endowment of Resources
	Managing Multi-Beneficiary Pools: Dedicated vs. Pooled Resources

	Extension: Heterogenous Agent Types
	Uniform Contract: Analysis

	Concluding Remarks

	Proofs of Results in the Main Paper
	Proofs of Results in Section 4
	Proofs of Results in Section 5
	Proofs of Results in Section 6
	Proofs of Results in Section 7
	Proofs of Results in Section 9
	Helpful Results
	Useful Results on Gaussian Random Variables
	Some Useful Functions and Their Properties


	A Generalization of the Model in Section 3
	Two Types of Resource (|| = 2)
	Multiple Types of Resources (|| 3)


