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Organizations routinely introduce hitherto-unexplored interventions to improve their supply chains. Con-

sider a principal (e.g., a firm) that implements a “seemingly-helpful” intervention: For any fixed actions

of the principal and the agents (e.g., consumers), the principal’s payoff is higher in the presence of the

intervention than in its absence. While one would expect such well-intentioned interventions to benefit the

principal, several papers within the OM literature show that the principal’s equilibrium payoff can be hurt,

even ignoring the intervention’s implementation cost. While this conclusion is often based on analyzing a

single-shot, simultaneous-move game, repeated-interactions can also serve as an appropriate environment in

many cases. A fundamental question arises: Does this conclusion hold even under repeated interactions?

We study this question using the framework of infinitely-repeated games and the notion of a precommit-

ment equilibrium from the literature on reputation in repeated games. We identify two key characteristics

that determine whether a seemingly-beneficial intervention helps, or can possibly hurt the firm: (i) nature of

the intervention (ceteris paribus, does it induce agents to react in a manner favorable to the principal?), and

(ii) extent of interaction (single-shot at one extreme and infinitely-repeated at the other). Interestingly, we

demonstrate the following two possibilities using settings analyzed in the recent OM literature: seemingly-

beneficial interventions can (a) hurt the firm in a single-shot analysis but benefit under repeated interactions,

and (b) continue to hurt the firm under repeated interactions. We also obtain easy-to-interpret conditions

under which the benefit of such interventions is guaranteed under repeated interactions.
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1. Introduction

The operations and supply chain management literature is replete with examples where researchers

propose interventions that are aimed at improving supply chains by reducing the inherent frictions
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that make trade less efficient. These interventions could either be firm-driven, e.g., technology-

driven operational interventions, or social planner-driven, e.g., governmental policy interventions.

The typical goal of such interventions is to improve the welfare of one or all members of the sup-

ply chain. Examples of policy interventions by a social planner include measures to improve the

accessibility and availability of goods to consumers, and promote sustainable practices. Several

such interventions have been investigated in the literature: (a) governmental price-support schemes

in developing economies to improve the production of foodgrains by the farmers and their con-

sumption by the below-poverty-line population (Guda et al. 2021), (b) interventions to improve

the quality of milk by reducing adulteration (Mu et al. 2014, 2016), (c) producer and consumer

subsidies to incentivize the adoption of electric vehicles (Avci et al. 2014), (d) interventions to

incentivize and improve the adoption of roof-top solar panels (Cohen et al. 2015), and (e) inter-

ventions to promote recycling and remanufacturing (Atasu et al. 2009). Examples of firm-driven

interventions that have been examined in the recent literature include: (a) interventions introduced

by service firms to reduce customer waiting and congestion through mechanisms such as mobile

order-and-pay (Gao and Su 2018), (b) interventions by retailers to improve customer shopping

experience, such as information about real-time in-store inventory (Aydinliyim et al. 2017) and

better information-provision mechanisms in the form of physical and virtual showrooms (Gao and

Su 2016), (c) interventions by software firms to protect users from software vulnerabilities, e.g.,

by providing monetary rewards to identifiers for each vulnerability reported (Kannan and Telang

2005) and (d) interventions by supply chain partners to reduce demand variability, e.g., through

better demand-forecasting and risk-pooling through transshipment (Zhang 2005, Li and Petruzzi

2017).

Of special interest to us in this paper are settings/interventions that are “seemingly-beneficial”;

that is, well-intentioned interventions that, on the surface, seem profitable to some or all interact-

ing parties, but result in hurting them when their strategic incentives are considered. Our work

focuses on such interventions. For concreteness, we begin with some examples. Mu et al. (2014,

2016) consider several settings to study adulteration in the milk supply chain in developing coun-

tries. They model the interactions between a population of farmers and a milk station (that collects

milk from the farmers), and design incentives to deter adulteration of milk by farmers; such inter-

ventions/incentives can be adopted either by the social planner or the station. They find that

interventions by the social planner aimed at lowering the cost of producing high-quality milk, such

as providing farmers with storage and refrigeration equipment, may not lead to an improvement

in the quality of milk. In a similar vein, Gao and Su (2016) find that an omnichannel retailer

who adopts information-provision mechanisms such as physical or virtual showrooms, that provide
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more information about products to consumers, may lead to an increase in the returns rate. Key

to such outcomes is the extent of the interaction: In both the examples above, the analysis is con-

ducted through a single-shot, simultaneous-move game, and therefore, the short-term incentives of

the players are deemed important. Nevertheless, in a variety of settings, including the ones above,

repeated interactions are natural and may also serve as an appropriate setting for analysis. For

instance, Mu et al. (2014) detail the interactions between the farmers and the station that occur at

the start of each day over a long horizon.1 Likewise, modeling the interactions between a retailer

and a population of consumers over multiple seasons has been the kernel of many papers in OM;

see Popescu and Wu (2007), Su and Zhang (2009), Liu and Van Ryzin (2011). More generally,

many applications can be viewed using both lenses – as a one-time interaction, or repeated over

a long horizon. Naturally, then, the following question arises: Do conclusions that arise from the

analysis of a one-shot game also hold when repeated interactions are considered? This is the main

question we examine in this paper.

In what follows, we present a model of a seemingly-beneficial intervention in Section 2, which

encompasses the common features of beneficial interventions studied in many OM settings. We

consider a fairly general setting – a principal (e.g., a firm, such as a retailer, or a government)

who interacts with multiple agents (e.g., consumers, citizens) – and define a seemingly-beneficial

intervention as follows: For any fixed actions of the principal and all agents, the payoff of the

principal is higher in the presence of the intervention relative to that in its absence (formally

defined in Assumption 2.2). We find that two aspects – the nature of the intervention and the

extent of the interaction – play a key role in determining whether the intervention always benefits

the principal. In particular, we identify a key property of a seemingly-beneficial intervention, viz.,

inducing beneficial actions from the agents (precisely defined in Assumption 2.4), under which the

benefit from such interventions can be confirmed; see Theorem 2.1. Subsequently, in Section 3, we

consider two recent papers: Mu et al. (2014) and Gao and Su (2016), who study seemingly-beneficial

interventions in the context of the milk supply chain, and omnichannel retailing, respectively.

We illustrate our key result in their respective settings. Finally, Section 4 summarizes the main

managerial implications of our work.

2. Seemingly-Beneficial Interventions: A General Model

Our aim in this section is to propose a general game-theoretic model of seemingly-beneficial inter-

ventions. To this end, we begin by studying two games, denoted by G1 and G2. Game G1 represents

1 Quoting Mu et al. (2016), “In developing countries, most of the milk acquired by stations is collected daily from
smallholder dairy farmers in rural areas . . . A typical station receives milk from about 100-200 farmers. Most of the
milk collected at a station is delivered [by farmers] in the morning between 6am and 11am. Evening delivery exists in
some cases, but accounts for a negligible fraction of the total milk collected.”.
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the interactions in the absence of an intervention while game G2 represents the interactions in its

presence; Section 2.1 describes these two games. In Section 2.2, we demonstrate how our general

model relates to two examples that will be discussed in detail in Section 3. Next, in Section 2.3, we

formally define four conditions (Assumptions 2.1 – 2.4) on the players’ actions and their payoffs

in the two games; in particular, Assumption 2.2 states the condition under which the intervention

is deemed as being seemingly beneficial. Then, in Section 2.5, we consider the case where the two

games G1 and G2 are played repeatedly over the long horizon. In this context, we use a key result

(Lemma 2.1) from the literature on reputation and repeated games – this result helps us employ

the notion of a two-stage precommitment equilibrium for an infinitely-repeated game. Our main

result in this section is Theorem 2.1, which shows that, under Assumptions 2.1 – 2.4, the benefit

from seemingly-beneficial interventions can be confirmed under repeated interactions.

2.1. Description of the Games: Players, Actions and Payoffs

Consider two one-shot simultaneous-move games Gj, indexed by j ∈ {1,2}, played between a large

player and a continuum of homogeneous, anonymous, small players.2 The two games, G1 and G2,

represent the interactions in the absence and in the presence of an intervention, respectively.

The action space of the players in games Gj, j ∈ {1,2}, is identical. Let AL (resp., AS) denote

the pure-action space of the large player (resp., the small players); AL (resp., AS) is either a finite

set or a compact subset of R. We allow for the players to use mixed actions. For any set X, we let

∆(X) denote the set of probability distributions over X; a discrete probability distribution over

X that places a probability p(x) on x ∈X is denoted by
∑

x∈X p(x) ◦ x. Let SL = ∆(AL) (resp.,

SS = ∆(AS)) denote the pure- and mixed-action space of the large player (resp., an individual

small player). Let aL ∈ SL (resp., aS,i ∈ SS) denote an action (pure or mixed) of the large player

(resp., an individual small player i). The actions of all the small players induce a population-action

distribution over AS (i.e., the proportion of players who play a particular action); let aS,A ∈ SS
denote this “average” play of the small players, i.e., distribution of the small players’ actions. In

particular, note that if all the small players use an identical action, say âS ∈ SS (i.e., aS,i = âS for

all i), then their average play is also âS.

Each player’s payoff depends on their own actions, the actions of the large player, and the average

play of the small players. Consider game Gj, j ∈ {1,2}. For any action aL of the large player and

an average play aS,A of the small players, let Πj(aL, aS,A) denote the payoff of the large player.

Further, given aL and aS,A, we denote the payoff of a small player whose individual action is aS,i

by πj(aS,i, aL, aS,A).

2 In Remark 2.3, we address the case of heterogeneous small players.
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Before proceeding further, we provide an overview of the two examples that we will discuss in

detail in Section 3 and their correspondences with the general model in this section.

2.2. Two Applications and Their Relationship to the General Model

The two examples below are drawn from the recent literature on the milk supply chain (specifically,

Mu et al. 2014, 2016) and omnichannel retailing (specifically, Gao and Su 2016). Table 1 below

summarizes the correspondence of the entities in these examples with those in the general model.

� Adulteration and Testing in the Milk Supply Chain (Section 3.1): We study a game

between a milk station and a population (modeled as a continuum/mass) of milk farmers.

The milk station procures milk from the farmers, mixes it, and sells it to a downstream firm.

Due to high testing costs, the station is unable to test each farmer, creating an incentive for

farmers to adulterate milk. Each farmer chooses the quality of milk he produces – he chooses to

produce either high or low quality milk. The station chooses its testing strategy of whether to

test an individual farmer or not. The farmers and the station can also use mixed strategies: An

individual farmer can randomize between high and low quality milk, while the station can

randomly test an individual farmer. A farmer who is tested is paid by the milk station based

on the quality of his milk, while each untested farmer is paid the high-quality price. The

downstream firm pays the station based on the quality of the mixed milk. In this context, we

consider an intervention by a social planner who supports the farmers by supplementing them

with better refrigeration and storage equipment, which reduce the marginal cost of producing

high quality milk. The correspondences with our general model are noted in Table 1.3

� Information Provision Mechanisms in Omnichannel Retail (Section 3.2): Here, we

consider an omnichannel retailer, who sells a single product to consumers across two chan-

nels: in-store and online. The retailer decides the stocking quantity in-store. Individual con-

sumers decide whether to shop in-store or online; consumers can also play mixed strategies.

The retailer’s profit depends on the proportion of consumers who visit each channel. An indi-

vidual consumer’s payoff depends on his own choice (whether to shop in-store or online), the

retailer’s stocking quantity, and the proportion of consumers who visit the store.4 Table 1

summarizes the correspondences with our general model. In this context, we discuss two

technology-driven interventions, viz., physical and virtual showrooms, that reduce product

valuation-uncertainty for the consumers.

3 Observe that this is a special case of the general model we consider in Section 2.1 in that the strategic interactions
among the farmers are absent, i.e., an individual farmer does not impose an externality on the other farmers. Formally,
the profit of an individual farmer is independent of the quality of mixed milk.

4 In this example, consumers impose a negative externality on each other. That is, for any stocking decision of the
retailer, a higher proportion of consumers who shop in-store lowers the incentives of an individual consumer to shop
in-store because they experience a greater stockout risk.
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General Model
(Section 2)

Adulteration in the Milk
Supply Chain (Section 3.1)

Information Provision in
Omnichannel Retailing

(Section 3.2)

Large player Milk station Retailer

Large player’s action Testing strategy In-store stocking decision

Small players Milk farmers Consumers

Individual small
player’s action

Quality of milk produced by an
individual farmer

Individual consumer’s choice of
shopping channel

Average play of the
small players

Quality of mixed milk
Proportion of consumers who
shop in-store (or shop online)

Beneficial
intervention

Governmental interventions to
reduce marginal cost of high

quality milk; e.g., supplementing
farmers with better storage and

refrigeration equipment

Information provision
mechanisms such as physical
and virtual showrooms that

reduce returns

Table 1 Correspondences between the entities in the general model and the applications in Section 3

Consider game Gj: The set of best-responses of an individual small player, corresponding to

the large player’s action aL ∈ SL and average play of the small players aS,A ∈ SS is denoted by

AjS,B(aL, aS,A). That is,

AjS,B(aL, aS,A) = arg max
aS∈SS

πj(aS, aL, aS,A).

It is straightforward that if a mixed action αS ∈AjS,B(aL, aS,A), then the pure actions on which αS

places positive probability are also best-responses.

We now introduce four assumptions on the players’ actions and their payoffs in

game Gj, j ∈ {1,2}:

2.3. Comparison of the Two Games

Consider the following assumptions:

Assumption 2.1. (Symmetric Best-Response) For any action (pure or mixed) aL ∈ SL of

the large player, define the set of “symmetric” best responses ÂjS,EQ(aL)⊆SS as follows:

ÂjS,EQ(aL) = {aS,A ∈ SS : aS,A ∈AjS,B(aL, aS,A)}.

We assume that ÂjS,EQ(aL) is non-empty.

In words, ÂjS,EQ(·) denotes the “symmetric” best-response correspondence of the small players,

i.e., the set of “symmetric” best-responses (pure or mixed) of the homogeneous small players for a
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fixed action of the large player. In the analysis that follows, this assumption allows us to restrict

our attention to equilibria that involve symmetric strategies for the small players. That is, all small

players play the same action and the “average play best-response” of the small players is identical

to the action of any individual player.5

In general, the set of symmetric best-responses of the small players, ÂjS,EQ(aL), corresponding

to some action(s) of the large player, may not be a singleton. In such cases, we choose the action

that leads to the lowest payoff for the large player. Formally,

AjS,EQ(aL) = arg min
aS,A∈Â

j
S,EQ

(aL)

Πj(aL, aS,A).

Note that AjS,EQ(aL) may not be a singleton in general.

Assumption 2.2. (A Seemingly-Beneficial Intervention) For any given actions of all the

players, the large player’s payoff in game G2 is higher than that in game G1, i.e.,

Π1(aL, aS,A)≤Π2(aL, aS,A) for any (aL, aS,A)

Interestingly, in many applications (including those we discuss in Section 3), for fixed actions of

all players, the payoff of any player is higher in game G2 than in game G1, i.e., G2 is “seemingly-

beneficial” to G1 for all players. The focus of our paper, however, is on the impact of seemingly-

beneficial interventions on the large player. Consequently, in Assumption 2.2, we only require that

the intervention is seemingly-beneficial to the large player, and do not impose any such assumptions

on the small players.

Assumption 2.3. (Increasing Average Plays) Consider game G1. Fix an action

a′L of the large player and consider two average plays a′S,A, a
′′
S,A of the small play-

ers. Clearly, either Π1(a′L, a
′
S,A) ≤ Π1(a′L, a

′′
S,A) or Π1(a′L, a

′
S,A) ≥ Π1(a′L, a

′′
S,A) holds. If

Π1(a′L, a
′
S,A)≤ (resp., ≥) Π1(a′L, a

′′
S,A), then for any action aL ∈ AL, we assume that

Π1(aL, a
′
S,A)≤ (resp., ≥) Π1(aL, a

′′
S,A).

In words, the large player’s preferences over the small players’ average play is independent of his

action. Stated differently, from the perspective of the large player’s payoff, there is an ordering over

the elements of SS.

We define the following two relationships:

5 If AS ⊆R, then the symmetric best-response of the small players comprises of a distribution over AS . From the law
of large numbers, their average action is equal to the mean of this distribution.



Guda et al. (2021): Seemingly-Beneficial Interventions
8

1. (Comparing Two Actions of the Small Players) Consider two average plays a′S,A, a
′′
S,A ∈

SS. We say that an average play a′S,A is “smaller” (resp., “larger”) than an average play a′′S,A,

denoted by a′S,A4 (resp., <) a′′S,A if, for any (and by the above assumption, all) aL ∈AL, we

have that Π1(aL, a
′
S,A)≤Π1(aL, a

′′
S,A). That is,

a′S,A4 a′′S,A⇐⇒Π1(aL, a
′
S,A)≤Π1(aL, a

′′
S,A) for all aL ∈ SL.

Further, a′S,A≺ (resp., �) a′′S,A if a′S,A4 (resp., <) a′′S,A and there exists aL ∈ SL such that

Π1(aL, a
′
S,A)< (resp., >) Π1(aL, a

′′
S,A).

2. (Comparing Two Sets of Actions of the Small Players) Consider two sets of aver-

age plays of the small players, A′,A′′ ⊆ SS. The set of average plays A′ is “smaller”

(resp., “larger”) than the set of average plays A′′, denoted by A′444 (resp., <<<) A′′, if, for

any a′S,A ∈A′, a′′S,A ∈A′′, we have that a′S,A4 (resp., <) a′′S,A. Further, A′≺ (resp., �) A′′ if

A′444 (resp., <<<) A′′ and there exist a′S,A ∈A′, a′′S,A ∈A′′ such that a′S,A≺ (resp., �) a′′S,A.

Remark 2.1. (Special Case: |AS|= 2) If the small player’s action space AS consists of two

actions, then the average play of the small players can be summarized with one parameter – the

proportion of small players who play, say, the first action. For instance, consider the example

in Section 3.2: Here, AS = {In-Store,Online}: A small player’s (i.e., an individual consumer’s)

actions can be either shopping in-store or online. Naturally, the set of strategies SS = ∆(AS) of

an individual small player i can be summarized by a single parameter, say φS,i ∈ [0,1], which

denotes his probability of choosing action In-Store; the average play of the small players can also

be summarised by a single parameter φS,A ∈ [0,1], which denotes the proportion of small players

who play action In-Store. Further, for any in-store stocking decision, the profit of the retailer is

increasing in the proportion of the consumers who shop in-store. Therefore, a “higher” average play

of the small players corresponds to a greater proportion of small players who choose In-Store,

i.e., a higher value of φS,A.

Consider gameG1 and an action aL of the large player. The profit of the large player, Π1(aL, aS,A),

can be rewritten as Π1(aL, φS,A), where φS,A denotes the proportion of small players who play H.

Suppose that Π1(aL, φS,A) is increasing in φS,A for any aL ∈AL. Then, the large player’s payoff is

increasing in the average play of the small players. �

Assumption 2.4. (Interventions Induce Higher Average Plays) Consider any action of

the large player aL ∈ SL. We assume that A1
S,EQ(aL)444A2

S,EQ(aL).

In words, the above assumption states that, for any given action of the large player, the symmetric

best-response of the small players is larger under the intervention (i.e., in G2) than the symmetric
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best-response of the small players in the absence of the intervention (i.e., in G1). That is, seemingly

beneficial interventions induce “beneficial actions” actions – that benefit the large player – from

the small players.

2.4. Seemingly-Beneficial Interventions as One-Shot Games

There exist one-shot simultaneous-move games G1,G2 which satisfy Assumptions 2.1–2.4 such that

in equilibrium, the larger player is worse-off in G2. That is, a seemingly-beneficial intervention that

induces beneficial actions from the small players can lead to an inferior equilibrium outcome for

the large player. We demonstrate an example below.

Example 2.1. (Seemingly-Beneficial Interventions Can Lead to Inferior Outcomes):

The actions and the payoffs, denoted in Figure 1, are as follows: The large player chooses a row

(i.e., AL = {U,D}; we allow for mixed strategies) while each small player chooses a column (i.e.,

AS = {L,R}). Consider game Gj, j ∈ {1,2}: For any r ∈ {U,D} and c ∈ {L,R}, Πj(r|c) denotes

the large player’s payoff if the large player chooses r and all the small players choose c; likewise,

πj(c|r) denotes an individual small player’s payoff if he chooses c and the large player chooses r.

We denote these payoffs and actions in Figure 1, i.e., corresponding to row r and column c, the

vector in the matrix denotes (Π(r|c), π(c|r)).

Suppose the large player plays aL = x ◦U + (1− x) ◦D while an individual small player i plays

aS,i = φi ◦L+ (1−φi)◦R. Let the average play of the small players be aS,A = φA ◦L+ (1−φA)◦R.

Then, for any fixed actions of the players, suppose that:

(a) The large player’s payoff is linear in the average play of the small players, i.e.,

Πj(x|φA) = x
[
φAΠj(U |L) + (1−φA)(Πj(U |R))

]
+ (1−x)

[
φAΠj(D|L) + (1−φA)(Πj(D|R))

]
.

(b) An individual small player’s payoff is linear in the large player’s action and independent of

the average play of the small players, i.e.,

πj(φi|x) = φi

[
xπj(L|U) + (1−x)πj(L|D)

]
+ (1−φi)

[
xπj(R|U) + (1−x)πj(R|D)

]
.

It is easy to verify that game G2 is (strictly) seemingly-beneficial to game G1 and Assumptions 2.1–

2.4 hold. However, in equilibrium, the outcome in game G1 involves the large player playing U and

all small players playing L, while the outcome in game G2 involves the large player playing D and

all small players playing R. Therefore, the payoff of all players in game G2 is strictly less than that

in game G1, i.e., all players are hurt. �
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Figure 1 Stage games G1 and G2. Game G2 is seemingly-beneficial to game G1. However, the equilibrium

outcome under G2 is inferior to that under G1.

The intuition behind this result is as follows: Seemingly-beneficial interventions that induce

beneficial actions incentivize the small players to exert higher actions for a fixed action of the

large player. However, conditional on the small players exerting a higher action, the large player

may have an incentive to lower his action. Anticipating this downward deviation from the large

player, the small players exert a lower action, and therefore, the resulting equilibrium outcome

hurts all players. It is important to note that the above observation pertains to the equilibrium

outcomes of the single-shot games G1 and G2. Key to such inferior outcomes is the “anticipated”

action of the large player (by the small players). In a one-shot game, there is no reason for the

small players to entertain the possibility that the large player will play a high action. A natural

question arises: Does this conclusion hold even under repeated interactions over the long run? It is

straightforward that if the small players (rationally) anticipate a high action by the large player,

they will respond favorably.

In what follows, we study the value of a seemingly-beneficial intervention to the large player over

the long horizon by analyzing a repeated game where the stage-game Gj is played repeatedly.

2.5. Repeated Games and Reputation

A rich body of literature in Economics has studied repeated games between a long-lived large

player (e.g., a firm, a government, etc.) and a continuum of anonymous and long-lived small players

(e.g., consumers, citizens, etc.) under a variety of settings; see, e.g., Mailath and Samuelson (2006).

Public (or observable) histories of play include the large player’s actions along with the average

of the small players’ actions while the actions of individual small players is not observed.6 In such

repeated games, it is straightforward that the small players can do no better than “myopically”

optimize: Since each small player forms a negligible part of the continuum, they cannot influence

the average play of the small players. Therefore, a change in her behavior does not affect the future

behavior of any player.

6 Alternatively, the actions of individual small player are not part of the large player’s history; therefore, the large
player’s actions in future periods depends on the average action of the small players, but not on the actions of
individual small players.
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A key result for such infinitely-repeated games is as follows: If the actions of the large player are

perfectly observable, as the large player’s discount factor, say δ, approaches 1 (i.e., when the large

player is sufficiently patient), his equilibrium normalized present value7 (NrPV) converges to his

“Stackelberg” payoff.8 The intuition behind this result is as follows: If the large player persistently

plays his Stackelberg strategy, the small players will eventually place a high probability on the large

player playing his Stackelberg strategy. It may take the large player a while to build a “reputation”

of playing his Stackelberg strategy, and in general, it may be costly for him to do so. However,

if he is sufficiently patient, this cost becomes negligible. This has now come to be known as the

two-stage precommitment equilibrium. Quoting Celentani and Pesendorfer (1996):

“. . . In a repeated game our anonymity assumption implies that each small player will play a

short-run best response in each period to that period’s expected play since his actions do not

affect his future payoffs or the public history of the game. Consequently, in a repeated game the

best possible commitment for the long-run player is to [play] the Stackelberg strategy for the

corresponding static game. Moreover, the long-run player only needs to convince his effectively

myopic opponents that he will follow the Stackelberg strategy in the current period in order to

achieve the Stackelberg payoff for that period.”

Further, this precommitment equilibrium payoff of the large player is robust to a variety of

informational settings. Quoting Levine and Pesendorfer (1995):

“. . . recent theoretical literature shows that such a two-stage precommitment equilibrium is a

consequence of reputation building in a repeated setting even when precommitment is impos-

sible. This was implicit in the work of Kreps and Wilson (1982) and of Milgrom and Roberts

(1982) on reputational equilibrium and was made explicit in the work of Fundenberg and Levine

(1989), Fudenberg and Levine (1992). Celentani (1991), Celentani and Pesendorfer (1996),

Schmidt (1993), and others have extended the scope of this result in a variety of ways.”

Within the OM literature, Su and Zhang (2009) explicitly study the value of commitment when

a retailer sells to strategic consumers who experience stockout-risk. They show how commitment

arises in an infinitely-repeated game, when the retailer can influence consumers’ beliefs about the

in-store stocking level. In their model, consumers adaptively learn and update their beliefs about

the retailer’s stocking decision using an exponential learning rule. The authors show that if the

retailer is sufficiently patient (discount factor is sufficiently close to one), his equilibrium stocking

7 For any discount factor δ ∈ [0,1) and any sequence of payoffs x1, x2, . . ., the normalized present value is defined to
be (1− δ)

∑∞
t=1 δ

t−1xt. We use the abbreviation NrPV instead of NPV to distinguish the normalized present value
from the net-present value. The two concepts are related through the identity NrPV= (1− δ)NPV.

8 The Stackelberg payoff of the large player is the most he could obtain in a single period by publicly committing to
any strategy, or equivalently, his payoff in a Stackelberg game where he is the leader.
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decision converges to his Stackelberg decision, and his NrPV corresponds to his Stackelberg payoff;

see Section 7.1 of their paper. Using a similar approach, in Section 3.1 of our paper, we illustrate

how commitment arises in equilibrium if the station is sufficiently patient and the milk farmers

adaptively learn the testing strategy of the station.

Formally, let Gj
∞, j ∈ {1,2} denote the infinitely-repeated game whose stage game is Gj. We

evaluate payoffs using the discounting criterion, where players discount future payoffs using a

discount factor δ. Denote the equilibrium payoff (NrPV) of the large player in Gj
∞ by Π∗j. Let Πj

ST

denote the Stackelberg payoff of the large player, defined as follows:

Πj
ST = max

aL∈SL

{
Πj(aL, aS,A) s.t. aS,A ∈AjS,EQ(aL)

}
(2.1)

The action that achieves the Stackelberg payoff is called the Stackelberg action. Then, we have the

following preliminary result.

Lemma 2.1. (Proposition 15.3.1 of Mailath and Samuelson (2006)) Consider Gj
∞ and

a fixed δ ∈ (0,1). Then, there exists a finite K s.t.

Π∗j ≥ δKΠj
ST + (1− δK)Πj,

where Πj = minaL,aS,A Πj(aL, aS,A).

Consequently, we have the following result.

Corollary 2.1. Consider Gj
∞ and a fixed ε > 0. There exists δε ∈ (0,1) s.t. for all δ ∈ (δε,1),

the equilibrium NrPV of the large player exceeds Πj
ST − ε.

The proof of Lemma 2.1 from the literature on reputation in repeated games adopts an “adverse

selection” approach to reputation; see Chapter 15 in Mailath and Samuelson (2006). Consider an

arbitrarily small perturbation of game Gj, where the large player could be one of the following

“types”: a strategic type, or a commitment type. The payoff of the strategic-type large player is

the same as that in the stage game Gj. The commitment-type large player plays a fixed action

in any period.9 The strategic-type large player can mimic the Stackelberg commitment-type (the

commitment-type who plays the Stackelberg action in each period), and thereby establish a rep-

utation of playing the Stackelberg action. In our subsequent analysis, we assume that the large

player is sufficiently patient and use the two-stage precommitment equilibrium as the outcome

under such infinitely-repeated games.

The result below compares the equilibrium profits of the large player in the precommitment

equilibrium of G1
∞ and G2

∞.

9 More generally, in a repeated game, the commitment types play a pre-specified game strategy. Commitment types
who play a fixed action are called simple commitment types, or action types.
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Theorem 2.1. (Seemingly-Beneficial Interventions that Induce Beneficial Actions)

Under Assumptions 2.1 – 2.4, if the large player’s discount factor is sufficiently close to 1 and his

actions are perfectly observable, then his payoff in the precommitment equilibrium of G2
∞ is higher

than his payoff in G1
∞.

Proof: Corollary 2.1 shows that if the large player’s discount factor is sufficiently close to 1 and

his actions in each period are perfectly observable, then his equilibrium NrPV converges to his

Stackelberg payoff (Πj
ST ). Recall the definition of Πj

ST from (2.1):

Πj
ST = max

aL∈AL

{
Πj(aL, aS,A) s.t. aS,A ∈AjS,EQ(aL)

}
To prove Theorem 2.1, we are to show that Π1

ST ≤Π2
ST . We show the stronger result that for any

aL ∈AL, a′S,A ∈A1
S,EQ(aL), a′′S,A ∈A2

S,EQ(aL), the following holds:

Π1(aL, a
′
S,A)≤Π2(aL, a

′′
S,A).

From Assumption 2.1, we know that AjS,EQ(aL), j ∈ {1,2} exist. From Assumption 2.4, we have

that A1
S,EQ(aL)444A2

S,EQ(aL). Therefore,

a′S,A4a
′′
S,A. (2.2)

Using (2.2) and Assumption 2.3, we have that

Π1(aL, a
′
S,A)≤Π1(aL, a

′′
S,A). (2.3)

Using Assumption 2.2, we have that

Π1(aL, a
′′
S,A)≤Π2(aL, a

′′
S,A). (2.4)

Combining (2.4) and (2.3), we have the required result. �

Remark 2.2. In this paper, we focus on seemingly-beneficial interventions that, if analyzed as

one-shot games, hurt the large player. This is because of the OM applications that motivate our

research – often, the surprising result in many OM papers involves demonstrating that seemingly-

beneficial interventions hurt the large player. Consequently, in our key result (Theorem 2.1), we

demonstrate the conditions under which seemingly-beneficial interventions benefit the large player

under repeated interactions.

On the other extreme, there exist seemingly-beneficial interventions that benefit the large player

in one-shot games but can hurt the large player over the long-run (under precommitment). First,

we provide a set of sufficient conditions on the games G1 and G2 such that the seemingly-beneficial
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Figure 2 Stage games G1 and G2. Game G2 is seemingly-beneficial to game G1, but does not induce beneficial

actions. The precommitment equilibrium outcome under in the infinitely-repeated game G2
∞ is inferior

to that under G1
∞.

intervention, if analyzed as a one-shot game, benefits the large player; see Appendix C. Second,

a seemingly-beneficial intervention that does not induce beneficial actions (i.e., if Assumption 2.4

does not hold) can lead to an inferior outcome for the large player under precommitment. We

illustrate this using an example below.

Example 2.2. The two games, G1 and G2, are identical to that in Example 2.1 except for the

payoff matrices, which are shown in Figure 2. The Nash equilibrium in the one-shot games (both

G1 and G2) involves the large player (resp., the small players) playing D (resp., R). We verify that

Assumptions 2.1 – 2.3 hold:

(a) Consider the following action of the large player: aL = x ◦U + (1−x) ◦D. We have that

A1
S,EQ(aL) =

 {L}, if x> 1/2;
{R}, if x< 1/2;
SS, if x= 1/2,

while A2
S,EQ(aL) = {R}.

(b) Game G2 is seemingly beneficial to G1, i.e., for any aL, aS,A, we have that

Π1(aL, aS,A)≤Π2(aL, aS,A).

(c) Consider two average plays a′S,A = x′ ◦L+ (1− x′) ◦R and a′′S,A = x′′ ◦L+ (1− x′′) ◦R of the

small players where x′, x′′ ∈ [0,1] and x′ ≤ x′′. We have that a′S,A4a
′′
S,A.

From (a) and (c) above, we have that A2
S,EQ(aL)≺A1

S,EQ(aL). Consequently, Assumption 2.4 does

not hold. In the precommitment equilibrium, the outcome in G1 involves the large player (resp., the

small players) playing U (resp., L), while in G2, the large player (resp., the small player) plays D

(resp., R). �

Remark 2.3. In Appendix B, we extend our main model (homogenous small players) to accom-

modate heterogeneity among the small players. The key difference arises in Assumption 2.1, i.e.,

the definition of the symmetric best-response of the small players. We assume that the small players

are associated with a type drawn from a distribution. Analogous to Assumption 2.1, we identify



Guda et al. (2021): Seemingly-Beneficial Interventions
15

the symmetric-in-type best-response of the small players in Assumption B.1. Assumptions 2.2 – 2.4

are as stated in the main model. Under Assumption B.1 and Assumptions 2.2 – 2.4, our main

result, namely Theorem 2.1, holds under heterogeneity among the small players, and the proof is

identical.

3. Two Applications of Our Results

In this section, we consider two recent papers, Mu et al. (2014) and Gao and Su (2016), and

demonstrate our main result from Section 2 in the context of their models.

3.1. Adulteration and Testing in Milk Supply Chains in Developing Economies

Mu et al. (2014, 2016) study the key economic forces that lead to milk adulteration in developing

economies and provide recommendations to improve the quality of milk. The basic structure of

the milk supply chain is as follows: A large intermediary (a station) procures raw milk from a

population of small milk farmers (producers), mixes the milk, and sells it to a downstream firm

(which, in turn, sells the processed milk to end consumers). The focus of their work is on the

interaction between the station and the producers. The downstream firm tests the mixed milk

supplied by the station and rewards it based on the quality of milk it supplies. On its part, the

station procures milk from a population of producers and pays each producer based on the quality

of the milk he supplies. Due to high testing costs, the station finds it too costly to individually

test each producer; therefore, it randomly tests some (but not all) producers. This inability to

test each producer creates an opportunity for individual producers to introduce adulteration –

an individual producer who produces low-quality milk (that is cheaper to produce) but claims to

produce high-quality milk may go untested and therefore enjoy a high payment.

In light of such practices, a key challenge faced by the milk stations is to design interventions,

i.e., create incentives, that improve the quality of milk. Further, owing to their fundamental role

in ensuring food safety and meeting developmental goals, governments in developing countries also

have an incentive to improve the quality of milk. We consider one such intervention: The government

supplements the producers with improved storage and refrigeration facilities, resulting in lowering

the marginal cost of production for high-quality milk.10 For simplicity, we hold the marginal cost

10 Mu et al. (2014) advocate for governmental interventions to support the various members of the milk supply chain.
Quoting them “...Over the years, the poor quality of milk has been a major concern in developing countries. Thus,
one possibility is for the government to sponsor the mixed test. Government support could come either (a) by direct
monetary assistance to the station, or (b) by a governmental office conducting the test at the station...”. Besides,
Mu et al. (2016) propose governmental interventions in the context of multiple competing milk stations. Further,
they recognize that the budget for governmental interventions in such countries is limited; therefore, they focus on
interventions that do not burden the government. Quoting them, “...have the government sponsor the bonus for the
stations; the change is mild in that no bonus is actually paid in equilibrium. Therefore, this addition of governmental
sponsorship of the bonus does not impose any burden on the government.”
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of production for low-quality milk fixed. Thus, as a result of the intervention, the profit margin

on high-quality milk increases. It would be intuitive to conjecture that such an intervention would

lead to an improvement in the quality of milk produced by an individual farmer, and thereby,

an improvement in the quality of mixed milk. However, contrary to intuition, we show that the

equilibrium quality of milk supplied by the producers does not change; our analysis is presented in

Section 3.1.1 below. This is because, an individual producer anticipates that an improvement in the

quality of milk by the producers encourages the station to lower its testing standards. Anticipating

lower testing, the producers, in turn, have an incentive to lower the quality of milk they produce.

In equilibrium, the quality of milk produced by the producers is independent of the difference in

the marginal costs.

Notice that the conclusion above is based on the analysis of a single-shot simultaneous-move

game, where the station chooses the testing level and the producers choose the quality of milk they

produce. Motivated by the fact that producers and the station interact repeatedly over the long

term, we examine the outcome under repeated interactions. Formally, we use the framework of a

repeated game between a large player (the station) and a continuum of small players (producers),

from Section 2. In this case, the station may have an incentive to establish a reputation that it

tests more frequently than what the equilibrium in the single-shot model predicts; if the produc-

ers anticipate higher testing, they best-respond by improving the quality of milk produced. We

find that repeated interactions allow the station to establish a reputation of testing with a high

probability. Consequently, if the station is sufficiently patient, its short-term incentives to lower

testing standards are dominated by its long-term incentives to establish a reputation of testing with

high probability, thereby inducing the farmers to produce high-quality milk. An intervention that

reduces the marginal cost of producing high-quality milk leads to an improvement in the quality

of milk produced and therefore benefits the station.

We begin by formally describing the model.

3.1.1. A One-Shot Model of Testing: The basic setup of milk testing is as follows: A pop-

ulation of small, homogenous producers (mass normalized to 1) simultaneously and independently

decide on the quality of milk they produce; an individual farmer decides on the quality of milk

he produces. The quantity of milk that is produced by an individual producer is irrelevant to our

analysis; all farmers are assumed to produce the same quantity and are paid based on the quality

of milk they produce. For convenience, assume that the total quantity of milk procured by the

station is one unit.

The unit economics for an individual producer and the station are as follows. Consider an

individual producer, who chooses to produce milk of quality φ∈ [0, φ]. Let w(φ) =w0 +w1φ denote
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the unit buying price at which the station procures milk of quality φ; we assume w1 > 0. The

payment to the producer is as follows: If the station tests the producer’s milk, it pays the producer

w(φ); otherwise, it pays the producer w(φ). Let c(φ) = c0 + 1
2
c2φ

2 denote the producer’s unit

production cost; we assume that c2 > 0.

The station mixes the milk procured from the producers and hence the quality of mixed milk is

the average quality chosen by the producers. The station sells the mixed milk to the downstream

firm and is paid based on the quality of milk it supplies: Let p(φ) = p0 + p1φ denote the selling

price for milk of quality φ, φ ∈ [0, φ] (i.e., the price at which the station sells to the downstream

firm). The quality of the mixed milk, denoted by φA, is the average quality of milk chosen by

the producers. For an average quality φA, the selling price is p0 + p1φA. The authors assume that

p1 > w1; thus, the profit margin (to the station) increases in the quality of the milk. We assume

that φ= p1
c2

, i.e., φ is the quality chosen by the integrated firm consisting of the station and the

producers.

The station decides its testing strategy, i.e., whether to test individual producers. The station’s

strategy includes mixed actions: Let x∈ [0,1] denote the station’s testing strategy, i.e., the station

tests an individual producer with probability x. Since the mass of producers is normalized to 1,

the proportion (or mass) of producers tested is 1 ·x= x. Testing is expensive for the station. Let t

denote the unit cost of testing.11 Then, corresponding to a strategy x (i.e., testing a proportion x

of the producers), the station incurs a cost of tx.

Consider the problem that the station faces: Let φ̂ denote the station’s belief about the (mean)

quality of milk produced by an individual producer. Corresponding to an action, say x (probability

of testing an individual producer) of the station, the (expected) profit of the station is

Π(x|φ̂) =
[
p0 + p1φ̂

]
−x
[
t+w0 +w1φ̂

]
− (1−x)

[
w0 +w1φ

]
. (3.1)

The profit of the station is linear in x. Let φI = φ− t
w1

. Thus,

x∗(φ̂A) =


0, if φ̂A >φ

I ;

1, if φ̂A <φ
I ;

[0,1], if φ̂A = φI .

(3.2)

(3.2) shows that it is optimal for the station to test all producers if the mean quality is below the

threshold φI and test no producer if the mean quality exceeds this threshold. Intuitively, from the

perspective of the station, the value of testing is greater if more producers produce low-quality milk.

That is, if more producers produce low-quality milk, then testing helps the station in paying a high

11 Here, the unit cost refers to testing a unit mass of producers.
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wage only to the producers of high-quality milk (instead of paying a high wage to all producers),

and therefore testing is valuable. On the other hand, as more producers produce high-quality milk,

the cost of testing outweighs the benefit that arises from identifying the low quality producers.

Consequently, testing is less useful, and therefore the station does not test the producers.

Now, consider the problem faced by an individual producer, say i. Let x̂ denote an individual

producer’s belief of the probability of testing. His profit from producing milk of quality φ is:

π(φ|x̂) =−
[
c0 +

1

2
c2φ

2
]

+ x̂(w0 +w1φ) + (1− x̂)(w0 +w1φ). (3.3)

From (3.3), observe that for any fixed testing strategy of the station x, the profit of the producer,

π(φ|x̂), is strictly concave in the quality φ. Therefore, corresponding to a fixed testing probability x̂,

the optimal quality of milk produced is:

φ∗(x̂) = x̂
w1

c2
. (3.4)

We now solve for the equilibrium actions of the station and the producers from the best-responses

in (3.2) and (3.4). We focus on symmetric strategies for the producers. Let φEQi denote the equilib-

rium quality produced by an individual producer and xEQ denote the equilibrium testing probability

of the station.

Lemma 3.1. The equilibrium strategies of the station and the producers are as follows:

xEQ =
φI(

w1/c2

) and

φEQi = φI ∀i.

Therefore, the equilibrium quality of the mixed milk is φEQA = φI(= φ− t
w1

).

Notice, from the above result, that the equilibrium quality of the mixed milk is independent of the

costs of production. An important consequence of this result is the following: An intervention that

results in a reduction in the cost of producing higher-quality milk, e.g., a governmental intervention

that provides better storage and refrigeration facilities, does not lead to an improvement in the

quality of the mixed milk. This is the conundrum that motivates our work in this section.

The intuition behind this result is as follows. Let the superscript 1 (resp., 2) denote the absence

(resp., presence) of the intervention. An intervention, like the one above, leads to a decrease in

c(φ): Suppose c20 ≤ c10 and c22 ≤ c12. Therefore, from (3.4), we have that φ∗1(x̂) ≤ φ∗2(x̂). That is,

for a fixed testing probability, the quality of milk produced by an individual producer is higher

in the presence of the intervention (relative to that in its absence). However, by considering the
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strategic incentives of the station to test producers, we find that the station has an incentive to

lower the testing probability in the presence of the intervention. This is because, the value from

testing decreases if producers produce high-quality milk. Anticipating this decrease in the testing

probability, an individual producer has an incentive to lower the quality of milk he produces.

Therefore, in equilibrium, the quality of milk remains unchanged.

It is important to note that this outcome is a result of a one-shot model of interaction between

a station and the producers. Motivated by the fact that the station interacts repeatedly with the

producers over the long term, we study the outcome under repeated interactions and contrast it

with the result above.

3.1.2. Testing under Repeated Interactions: Our Results

Consider the setting where the one-shot simultaneous move game described in Section 3.1.1 is

played repeatedly. First, we verify that Assumptions 2.1 – 2.4 hold in the proposed intervention.

1. (Symmetric Best-Response) For any testing probability of the station, the symmetric

best-response of the producers, given in (3.4), is unique.

2. (Seemingly-Beneficial Intervention) The intervention proposed above, where a social

planner provides better storage and refrigeration equipment to lower the marginal cost of pro-

ducing high quality milk, is (weakly) seemingly-beneficial. Consider a fixed testing probability

x of the station and an average quality φA by the population of producers. The intervention

does not affect the profit of the station, and hence the profit of the station remains fixed, i.e.,

Assumption 2.2 is satisfied with an equality.

3. (Increasing Average Plays) Consider a fixed testing probability, say x, chosen by the

station. From (3.1), the profit of the station, Π(x,φA), is increasing in the average quality φA

of the mixed milk. That is, for any testing strategy, the station prefers a higher quality of the

mixed milk.

4. (Interventions Induce Higher Average Plays) Consider a fixed testing probability x of

the station. From (3.4), the best-response of the producers (i.e., the quality of milk) is higher

in the presence of the intervention, i.e., φ∗1(x)≤ φ∗2(x).

Therefore, we use the results from Section 2 to analyze this repeated game between the station and

the producers. In any period, the payoff-relevant variables for the producers (resp., station) are

their beliefs on the testing probability (proportion of producers who produce high quality milk) –

the producers best-respond to the anticipated testing strategy of the station.

In the two-stage precommitment equilibrium, the station can be assumed to commit to a single

testing level x∈ [0,1]. The producers effectively play their best response to the station’s committed
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strategy. Therefore, their best response, φ∗(x), is given in (3.4). The “Stackelberg” profit (NrPV)

of the station is:

Π(x|φA = φ∗(x)) =
(
p0 + p1x

w1

c2

)
−x
(
t+w0 +w1x

w1

c2

)
− (1−x)(w0 +w1φ). (3.5)

Therefore, the equilibrium testing probability of the station is

x∗ = xEQ +
t/(2w1)

w1/c2
. (3.6)

Further, φ∗ = φEQ+ t
2w1

. Observe that x∗ >xEQ and φ∗ >φEQ. This is because, if the station could

establish a reputation of testing with a high probability, then the producers respond by producing

high quality milk. In the one-shot model, the station has a short-term incentive to lower its testing

standards in the presence of the intervention. However, under repeated interactions, if the station

is sufficiently patient, then these short-term incentives are dominated by an incentive to establish

a reputation of testing with a high probability. Therefore, in equilibrium, the station establishes a

reputation that its testing standard strictly exceeds xEQ. Further, the one-shot model’s prediction

of the station’s equilibrium profit is independent of c0 and c2. However, under repeated interactions,

the equilibrium profit of the station increases as c2 decreases, i.e., the intervention indeed benefits

the station.

Remark 3.1. In Appendix A, we illustrate how the station is able to establish a reputation

of testing with a high probability in an infinitely-repeated game between the station and the

producers. We assume that producers adaptively learn the testing strategy of the station over

time using an exponential learning rule. This approach has been commonly employed in the OM

literature – in particular, in papers that explicitly model strategic consumer behavior in repeated

games; see, e.g., Su and Zhang (2009), Liu and Van Ryzin (2011).

Remark 3.2. Recall, from the general model in Section 2.5, that for the large player to be able

to establish a reputation that he is a Stackelberg type, we require that his actions are perfectly

observed. In the context of the model above, we require that the testing strategy of the station is

observed perfectly, and the actions of an individual farmer are not part of the observable history.

These are both reasonable in the context of our model: The lack of sophisticated technology at

the station to monitor the past actions of the farmers implies that their actions are not part of

the history. Besides, we assume that social interactions among the farmers allows for the station’s

actions to be perfectly observed.
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3.2. Information Provision Mechanisms in Omnichannel Retail

Our discussion in this section is motivated by Gao and Su (2016), who study how retailers oper-

ating in an omni-channel environment use information-provision mechanisms to help consumers

resolve their uncertainty about a product’s valuation before purchase. In particular, they study

two mechanisms that have gained prominence in recent years: (a) physical showrooms and (b) vir-

tual showrooms, and compare the performance of a “traditional” retailer (who does not adopt any

mechanism to provide information to consumers a priori) to a retailer who uses either of these

mechanisms.

Conventional wisdom suggests that the use of such information-provision mechanisms will not

only help consumers in resolving their valuation uncertainty before purchase, but will also benefit

the retailer by lowering the costs incurred due to consumer returns. Thus, one would intuitively

expect such an intervention from the retailer to lead to a “win-win” outcome, i.e., improve both the

retailer’s profit and the consumers’ utility. Surprisingly, in an important result of their paper, Gao

and Su (2016) show that such mechanisms can potentially hurt the retailer and the consumers,

considering the strategic incentives of both the parties under the mechanisms. This is the conun-

drum that motivates this section of our paper. Briefly, the intuition behind the results in Gao and

Su (2016) is as follows: Relative to their absence, physical showrooms reduce in-store inventory

and hence increase consumers’ stock-out risk, thereby discouraging store patronage and diverting

consumers to go online. This leads to more returns and hurts the retailer when the cost associ-

ated with returns is high. Virtual showrooms reduce product-value uncertainty and make online

shopping more appealing. This leads to more returns, and hurts the retailer when the online profit

margin is low.

It is important to note that the analysis in Gao and Su (2016) is based on a single-shot,

simultaneous-move game, in which the retailer decides the in-store stocking level, and the con-

sumers decide whether to shop in-store or online. Motivated by the fact that retailers and their

consumers typically interact with each other repeatedly over the long term, we examine the conun-

drum under repeated interactions.12 We now summarize the models and the results of Gao and Su

(2016) that are relevant to our analysis.

3.2.1. A One-Shot Model of Information Provision in Omni-Channel Retail

The authors first consider a “traditional” retailer who provides no information to consumers before

purchase (the base model). Subsequently, they consider a retailer operating with a physical show-

room in-store, or a virtual showroom online.

12 By repeated interations, we mean that the single-period game is played multiple times across time periods, for a
different product – e.g., a different generation of a product – in each period.
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Base Model A retailer (he) operating in an omni-channel environment sells a new product

using two channels: in-store (offline) and online. The store channel is modeled as follows: The price

of a unit item is p, and the cost for stocking an item is c. Before the demand is realized, the retailer

decides the in-store stocking level q. Leftover units have no value. The online channel is modeled

exogenously as follows: The retailer obtains a net profit margin of w for each unit sold online

successfully (i.e., not returned), and incurs a net loss of r if it is returned (i.e., an unsuccessful

transaction).13

The market size, denoted by D, is random and follows a distribution F (·). Consumers are ex-ante

homogenous and uncertain about their valuation: a fraction θ have a positive value v for the product

(“high-type” consumers), and the remaining (1− θ) have value 0 (“low-type” consumers). They

realize their valuation after examining the product in-store; otherwise, they learn their valuation

after purchase. Each consumer makes a choice between shopping online or visiting the store by

comparing her payoff from both the channels. The consumer-utility model is as follows: If she buys

from the online channel, she incurs a hassle cost ho, and realizes her valuation only after receiving

the product. If she likes the product (high-type), she keeps the product, and receives a payoff

v − p− ho; if she dislikes the product (low-type), she returns the product. Returns are costly to

both the retailer and the consumer: Each returned unit generates a loss r > 0 for the firm and

a return-hassle cost hr > 0 to the consumer.14 A consumer’s expected payoff from buying online,

denoted by uo, is then given by:

uo =−ho + θ[v− p] + (1− θ)[−hr].

If the consumer goes to the store first, she incurs a store-hassle cost hs, and subsequently, one of

the following outcomes occur: If the store is in-stock, then she evaluates the product and realizes

her valuation (either 0 or v) immediately. If she is a high-type consumer, then she purchases the

product and receives a payoff v − p. If she is a low-type consumer, then she does not purchase

the product and receives a payoff 0. If the store is out-of-stock, then she goes online, and receives

the online payoff uo. All the parameters are fixed and common knowledge. Conditional on con-

sumers adopting a symmetric mixed strategy φ (the probability of visiting the store), the in-stock

probability corresponding to a stocking-level q is given by

ξ(φ, q) =
E
[
min

{
q
θ
, φD

}]
E[φD]

. (3.7)

13 The assumption here is that any order placed online will be satisfied, and therefore, the authors abstract away
from modeling stocking decisions for the online channel.

14 The assumption here is that hr < p, so that low-type consumers strictly prefer returning the product.
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Therefore, a consumer’s expected payoff from visiting the store, denoted by us, is given by

us =−hs + ξ
[
θ(v− p)

]
+ (1− ξ)

[
uo
]
.

The profit of the retailer corresponding to an in-store stocking level of q, when consumers adopt a

symmetric mixed strategy φ∈ [0,1], is

πB(q|φ) = pθE
[

min
{
φD,

q

θ

}]
− cq+

(
wθ− r(1− θ)

)
E
[(
φD−min

{
φD,

q

θ

})
+ (1−φ)D

]
=

(
p−w+

r(1− θ)
θ

)
E
[
min{θφD,q}

]
− cq+πo, (3.8)

where πo = (wθ− r(1− θ))E[D]. The equilibrium of this game is presented in Proposition 1 of Gao

and Su (2016).

Physical Showrooms The retailer with an in-store physical showroom is modeled as follows:

Consumers can always inspect the product in a store with a physical showroom, despite a stock-out

(due to the availability of a display product). The parameters of the retailer and the consumers

are identical to those in the base model. A consumer’s payoff from choosing the online channel is

identical to that in the base model. Her payoff from choosing the store channel is

us =−hs + ξ
[
θ(v− p)

]
+ (1− ξ)

[
θ(−ho + v− p)

]
.

The difference from her corresponding payoff in the base model arises in the second term of the

above expression, when a consumer goes to the store and experiences a stock-out: She realizes her

valuation by inspecting the display product and, hence, only a high-type consumer goes online

(in the base model, all consumers who face a stock-out in-store go online). In essence, physical

showrooms do not affect the payoff of high-type consumers but help low-type consumers realize

their valuation even during a stock-out.

The profit of the retailer corresponding to an in-store stocking level of q, when consumers adopt

a symmetric mixed strategy φ∈ [0,1], is

πPS(q|φ) = pθE
[

min
{
φD,

q

θ

}]
− cq+wθE

[
φD−min

{
φD,

q

θ

}]
+
(
wθ− r(1− θ)

)
E
[
(1−φ)D

]
=
(
p−w

)
E
[
min{θφD,q}

]
− cq+πo + r(1− θ)E[φD]. (3.9)

The equilibrium of this game is presented in Proposition 2 of Gao and Su (2016). Further, their

Proposition 3 compares the performance of a retailer in the base model and one with a physical

showroom, and shows that physical showrooms hurt the retailer when the value of θ is moderate. The

intuition is as follows: Conditional on consumers visiting the store, the retailer operating an in-store

physical showroom finds it optimal to lower the in-store stocking level (vis-á-vis the base model).

Anticipating the resultant increase in the stockout risk, a higher proportion of consumers choose

to shop online. This increases consumer returns and hurts the retailer when the cost associated

with returns is high.
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Virtual Showrooms The retailer with a virtual showroom in the online channel is modeled as

follows: All consumers first inspect the product virtually and receive an imperfect signal of their

valuations. All high-type consumers remain interested in the product, while only a fraction (1−α)

of the low-type consumers remain interested (i.e., a fraction α ∈ [0,1] of the low-type consumers

realize their valuation through the signal).15 Therefore, the total demand size, denoted by D′, is

(1− α(1− θ))D, and the posterior probability of a high-type consumer, denoted by θ′(> θ) and

derived from Bayesian updating, is θ
1−α(1−θ) . All other parameters of the retailer and the consumers

are identical to those in the base model.

The profit of the retailer corresponding to an in-store stocking level of q, when consumers adopt

a symmetric mixed strategy φ∈ [0,1], is

πV S(q|φ) = pθ′E
[

min
{
φD′,

q

θ′

}]
− cq+

(
wθ′− r(1− θ′)

)
E
[(
φD′−min

{
φD′,

q

θ′

})
+ (1−φ)D′

]
=

(
p−w+

r(1−α)(1− θ)
θ

)
E
[
min{θφD,q}

]
− cq+πo + rα(1− θ)E[D]. (3.10)

The equilibrium of this game is presented in Proposition 4 of Gao and Su (2016). In their Proposi-

tion 5, the authors compare the performance of a retailer in the base model and one with a virtual

showroom, and show that virtual showrooms hurt the retailer when the value of θ is moderate and

w is low. The intuition is as follows: A virtual showroom makes online purchasing more appealing

and increases total returns, which hurts the retailer when the online profit margin is low.

We now analyze repeated interactions between the retailer and consumers, over the long term.

3.2.2. Repeated-Interaction Model of Omni-Channel Retail: Our Results

Consider the setting where the one-shot simultaneous-move game(s) described in Section 3.2.1 is

repeated over an infinite number of periods. Specifically, in each period, the retailer’s decision is

the in-store stocking level for the product under consideration in that period, while each consumer

decides to shop in-store or online (possibly mixed). In any period, the public histories of the

game include the retailer’s stocking level and the proportion of consumers who shop in-store in

each period, until that period. The players maximize their individual NrPVs. Our goal in this

section is to compare the retailer’s equilibrium NrPV in the three cases, viz., the base model, the

physical showroom, and the virtual showroom. Recall from our discussion of the precommitment

equilibrium (Section 2.5) that the retailer’s equilibrium NrPV converges to his Stackelberg payoff

as his discount factor approaches 1. Accordingly, we compare the Stackelberg payoff of the retailer

in the three cases.

15 Gao and Su (2016) interpret α as the degree of informativeness of the signal.
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The main results of this section are Lemmas 3.2 and 3.3. In contrast to Gao and Su (2016),

Lemma 3.2 shows that, under repeated interactions, a physical showroom always benefits the retailer.

Consistent with Gao and Su (2016), Lemma 3.3 shows that under repeated interactions, a virtual

showroom can hurt the retailer. We then explore the fundamental difference between these two

mechanisms that leads to these contrasting conclusions.

Base Model We first define the following quantities that help in our analysis. Let ξIB denote

the following in-stock probability:

ξIB = min

{
1,

hs
ho + (1− θ)hr

}
.

Intuitively, ξIB is the in-stock probability that makes a consumer indifferent between choosing

the online and the store channel in the base model. Using (3.7), let qIB be implicitly defined as

ξ(1, qIB) = ξIB. When all consumers visit the store, qIB is the in-store stocking level that leads to an

in-stock probability of ξIB.

In the two-stage precommitment equilibrium of the base model, the retailer can be assumed to

commit to a single stocking level q≥ 0. Since all consumers then choose to shop in-store or online

simultaneously, the consumers effectively play a best response to the retailer’s committed strategy,

and hence each consumer chooses to go to the store with a probability φ∗B(q) = min{1, q

qI
B
}. The

intuition is as follows: Recall that qIB is the stocking-level in store that makes a consumer indifferent

between the two channels when all other consumers visit the store channel. Therefore, for any

stocking level q larger than qIB, consumers strictly prefer shopping in-store. If the firm stocks q= 0,

then it is optimal for any consumer to shop online. For intermediate values of q, consumers use a

mixed strategy. Since each consumer chooses to shop in-store with a probability φ∗B, the aggregate

proportion of consumers who shop in-store is φ∗B.

The Stackelberg profit of the retailer (i.e., the payoff under his best commitment strategy), using

(3.8), is then given by maxq≥0 πB(q|φ∗B(q)).

Physical Showroom Similar to the two-stage precommitment equilibrium in the base model

above, we can obtain the precommitment equilibrium when the retailer operates an in-store physical

showroom. In this case, we begin with the following definitions. Let

ξIPS = max

{
0,min

{
1,
hs− (1− θ)(ho +hr)

θho

}}
.

Define qIPS implicitly as ξ(1, qIPS) = ξIPS. The intuition for ξIPS (resp., qIPS) is identical to ξIB (resp.,

qIB) in the base model, except that these quantities are defined for the physical showroom model.
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Observe that ξIPS ≤ ξIB and qIPS ≤ qIB: This is because, ceteris paribus, physical showrooms remove

product-valuation uncertainty, and hence a lower stocking level is sufficient to incentivize the

consumers to visit the store vis-á-vis the base model.

Suppose the retailer commits to an in-store stocking level q≥ 0. Responding best to this stocking

level, consumers choose to shop in-store with a probability φ∗PS(q) = min{1, q

qI
PS
}. The Stackelberg

payoff of the retailer, from (3.9), is then maxq≥0 πPS(q|φ∗PS(q)). We now compare the profit of the

retailer in the precommitment equilibrium of the base model with that in the presence of a physical

showroom. We first verify that assumptions 2.1 – 2.4 hold under physical showrooms:

1. (Symmetric Best-Response) The best-response of the consumers corresponding to a stock-

ing level, say q, in the base model (resp., in the presence of a physical showroom) is given by

φ∗B(q) = min{1, q

qI
B
} (resp., φ∗PS(q) = min{1, q

qI
PS
}) and is unique.

2. (Seemingly-Beneficial Intervention) Physical showrooms are seemingly-beneficial inter-

ventions, relative to the base model. That is, for a fixed proportion of consumers choosing to

shop in-store, and a fixed in-store stocking quantity, it is straightforward to see, by comparing

(3.8) and (3.9), that the profit of the retailer is higher with a physical showroom, i.e., for a

fixed φ∈ [0,1] and q≥ 0, we have that

πB(q|φ)≤ πPS(q|φ).

Therefore, for any φ∈ [0,1], we have

max
q≥0

πB(q|φ) ≤ max
q≥0

πPS(q|φ).

3. (Increasing Average Plays) Next, observe that both πB(q|φ) and πPS(q|φ) are (weakly)

increasing in φ for a given value of q – that is, for a given in-store stocking level q, the retailer

benefits with a higher proportion of consumers shopping in-store, in both the cases. Further,

Remark 2.1 is applicable to this setting.

4. (Interventions Induce Higher Average Plays) Finally, from the discussion at the start

of this section, we know that qIB ≥ qIPS. Hence, for any fixed q≥ 0, we have

φ∗B(q) ≤ φ∗PS(q).

In words, for a fixed stocking level of the retailer, a higher proportion of consumers choose to

shop in-store when the retailer operates a physical showroom.
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Combining these arguments, we have

max
q≥0

πB(q|φ∗B(q)) ≤ max
q≥0

πPS(q|φ∗PS(q)),

i.e., the retailer’s profit in the precommitment equilibrium is always higher with the physical

showroom. Thus, we have the following result.

Lemma 3.2. The profit of the retailer operating a physical showroom in the precommitment

equilibrium is higher than that in the base model.

The intuition behind this result is as follows: While in a one-shot model, consumers might be

skeptical of going to the store anticipating a low stocking level, in a repeated setting, the retailer

has an incentive to persistently have a high in-store stocking-level (i.e., his Stackelberg strategy),

in order to establish a reputation for high service levels. While the retailer takes time and incurs a

cost to establish such a reputation, this cost becomes negligible if he is sufficiently patient. When

he establishes such a reputation, a physical showroom – which incentivizes consumers to shop

in-store – benefits the retailer.

Virtual Showrooms Similar to the analysis above, we now obtain the precommitment equi-

librium for the case where the retailer operates a virtual showroom in the online channel. Let

ξIV S = min

{
1,

hs
ho + (1− θ′)hr

}
,

and define qIV S implicitly by ξ(1, qIV S) = ξIV S. As before, the intuition for ξIV S and qIV S is similar.

Observe that ξIV S ≥ ξIB, and qIV S ≥ qIB: This is because all consumers receive an informative signal

which reduces their product value uncertainty, and hence they have a greater incentive to shop

online vis-á-vis the base model.

Suppose the retailer commits to an in-store stocking level q ≥ 0. The best response of the con-

sumers to a stocking level q is then φ∗V S(q) = min
{

1, q

qI
V S

}
. The Stackelberg payoff of the retailer,

using (3.10) is then given by maxq≥0 πV S(q|φ∗V S(q)).

We now compare the profit of the retailer in the precommitment equilibrium of the base model

with that in the virtual showroom. Interestingly, we find that in the precommitment equilibrium,

the profit of the retailer with a virtual showroom can be lower than his profit in the base case.

This finding is consistent with that in Gao and Su (2016); we illustrate it below using a simple

numerical example.
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Example 3.1. Consider the virtual showroom mechanism and let α= 1, i.e., the virtual show-

room completely resolves the product-valuation uncertainty of the consumers. Suppose ho <

hs: Since all the consumers that remain in the market are of high type, and the online has-

sle cost is lower than the store hassle cost, they shop online. Therefore, in the precommitment

equilibrium, the retailer stocks 0 units in-store. Now, suppose that D ∼ exp(δ), p = $30, w =

$15, r = $1, θ = 0.2, c= (p−w+ r 1−θ
θ

) 1
e
≈ $6.99, hs

ho+(1−θ)hr = 1 − 1
e
. Then, πV S =wθE[D] = 3

δ
.

Consider the base case. Here, in the precommitment equilibrium, the retailer stocks θ
δ
. Hence,

πB = θp−wθ+r(1−θ)
δ

(1− 2
e
) + wθ−r(1−θ)

δ
= 3.204

δ
(>πV S). �

We state the result below.

Lemma 3.3. The profit of the retailer operating a virtual showroom in the precommitment equi-

librium can be lower than that in the base model.

Lemmas 3.2 and 3.3 establish contrasting conclusions: Under repeated interactions, physical

showrooms always benefit the retailer while virtual showrooms can hurt the retailer. We now

examine a key difference between these two information-provision mechanisms that leads to these

disparate outcomes.

Key Difference between Physical and Virtual Showrooms: Regardless of whether the

retailer uses a physical showroom in-store or a virtual showroom online, Assumptions 2.1 – 2.3 hold.

However, Assumption 2.4 holds only with the physical showroom: That is, for any fixed stocking

level q ≥ 0, in-store, relative to the base case, the proportion of consumers shopping in-store is

higher with the physical showroom, i.e., φ∗B(q)≤ φ∗PS(q). In contrast, with virtual showrooms, we

have φ∗V S(q)≤ φ∗B(q).

Thus, the key difference between the two mechanisms can be succinctly summarized as fol-

lows: For a fixed stocking level in-store, the retailer prefers to have a higher proportion of consumers

shop in-store (from (3.9) and (3.10)). However, a virtual showroom makes online shopping more

appealing and, hence, more consumers shop online (relative to the base case). In contrast, with a

physical showroom, when the retailer commits to a stocking level in-store, more consumers shop

in-store (relative to the base case). This fundamental difference leads to contrasting outcomes for

the retailer.

We conclude by highlighting our main message.

4. Substantive and Managerial Implications

From a substantive perspective, our analysis identifies two characteristics that are fundamental in

determining whether an intervention will always help or can possibly hurt the firm:
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� Nature of the Intervention: Fixing the firm’s action, does the introduction of the intervention

induce consumers to take actions that provide higher benefit to the firm? If affirmative, the

intervention can be said to induce beneficial actions. For instance, in the context of milk adul-

teration discussed in Section 3.1, for a fixed testing strategy of the milk station, an intervention

that reduces the marginal cost of producing high-quality milk (e.g., a governmental interven-

tion that provides better storage and refrigeration equipment to the producers) induces them

to produce higher quality milk.

� Extent of Interaction: Do the consumers interact with the firm repeatedly and, if yes, is the

firm sufficiently patient? For instance, in Section 3.1, it is reasonable to assume that the

producers (small farmers) interact with the milk station repeatedly over the long-term.

From a managerial perspective, when a one-shot interaction is appropriate, then irrespective of

the nature of the intervention, a seemingly-beneficial intervention can hurt the firm. On the other

hand, for environments in which repeated interactions are natural, regardless of the outcome under

a one-shot interaction, interventions that induce beneficial actions from the consumers always

benefit the firm. However, if a seemingly-beneficial intervention does not induce beneficial actions

from the consumers, then the intervention can hurt the firm under repeated interactions even

though it benefits the firm under a one-shot interaction.
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Appendix A: An Illustration of the Equilibrium Outcome under Repeated
Interactions with Adaptive Learning

Consider the case where the action spaces are compact subsets of R (i.e., AL,AS ⊆ R), and the payoffs of

the players, Πj(aL, aS,A) and πj(aL, aS,A, aS), are continuous and differentiable in their arguments. Let âL

denote the “anticipated” action of the large player by the small players. The small players play the symmetric

best-response, ajS,EQ(âL). The payoff of the large player in game Gj , j ∈ {1,2} is Πj(aL, aS,EQ(âL)). With a

mild abuse of notation, we denote Πj(aL, aS,EQ(âL)) by Πj(aL, âL).

Consider the repeated game Gj
∞, where the large player interacts repeatedly with the small players over

periods t = 1,2, . . .. In any period t, the small players anticipate an action (âL)t, and play the symmetric

best-response ajS,EQ((âL)t). The large player chooses an action (aL)t. At the end of the period, the small

players perfectly observe the action of the large player (aL)t and update their belief for the next period.

In period t+ 1, the anticipated action of the large player by the small players is (âL)t+1 = α(aL)t +α(âL)t,

where 0≤ α≤ 1 and α= 1−α.

The large player playing this repeated game faces the following dynamic optimization problem, with the

objective of maximizing his NrPV over an infinite horizon.

max
(aL)t∈AL

(1− δ)
∞∑
t=1

δt−1Π((aL)t, (âL)t)

s.t. (âL)t+1 = α(aL)t +α(âL)t.

We write the Bellman’s equation for the large player’s optimization problem:

V j(âL) = max
aL∈AL

[
Πj(aL, âL) + δV j(αaL +αâL)

]
. (A.1)

Let a∗L
j(âL) denote the maximizer to (A.1). Then, for any âL, the following two conditions hold:

1. Since a∗L
j(âL)is the maximizer to (A.1), we use first-order conditions to obtain the following:[

∂Πj(aL, âL)

∂aL
+ δαV j ′(αaL +αâL)

]∣∣∣∣∣
aL=a∗

L
(âL)

= 0 (A.2)

2. From the envelope theorem, we have:

V j′(âL) =
∂Πj(aL, âL)

∂âL
+ δαV j′(αaL +αâL). (A.3)

Suppose there exists a fixed point ȧjL to a∗L
j(·), i.e., a∗L

j(ȧjL) = ȧjL. Then, for any initial belief (âL)1, we have

that (âL)t→ ȧL. Substituting âL = ȧL in (A.2) and (A.3), we have:[
δα
∂Πj(aL, âL)

∂âL
+ (1− δα)

∂Πj(aL, âL)

∂aL

]∣∣∣∣∣
aL=a∗L

j(âL),
âL=ȧL

= 0. (A.4)

Observe that, on the one end, if δ = 0, then the solution to ȧL in (A.4) corresponds to the Nash equilibrium

of the one-shot game, while on the other end, if δ = 1, we obtain the optimal commitment of the large player.

An intermediate value of δ leads to an intermediate value of ȧL.
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Now, consider the example discussed in Section 3.1. In this case, (A.4) becomes:[
αδw1

c2

(
p1−w1ẋ

)
+ (1−αδ)

(
− t+w1(φ− tw1

c2
)
)]

= 0

⇒ ẋ(δ) = φ̇(δ)(
w1
c2

) , where φ̇(δ) = αδ
αδ+(1−αδ)φ+ 1−αδ

αδ+(1−αδ) (φ− t
w1

). (A.5)

Notice that φ̇(δ) is increasing in δ, and therefore ẋ(δ) is also increasing in δ. That is, as the station is

increasingly patient (i.e., values future payoffs), its testing probability increases. Further, as δ→ 1, we have

that ẋ(δ)→ x∗ as shown in (3.6).

Appendix B: Heterogeneity of Small Players

Consider an identical framework as explained in Section 2.1, except for the following difference to allow for

heterogeneity among the small players. The key difference arises in Assumption 2.1. Suppose that each small

player (in the continuum of small players) draws a type θ ∈Θ in period 0 according to p(·). Θ is either a finite

set, or a compact subset of R. If Θ is a finite set, then p(·) denotes the p.m.f of θ; otherwise p(·) denotes the

p.d.f. of θ. The (pure) action space of all small players is identical and is denoted by AS; SS = ∆(AS). The

actions of all the small players induces a population action distribution over AS, i.e., aS,A ∈ SS. The payoff

of a small player of type θ in game Gj is denoted by πjθ(aS, aL, aS,A), while that of the large player is given

by Πj(aL, aS,A). In particular, as stated in Section 2.3, we assume that the large player’s payoff depends on

his action and the average of the small players’ actions, while the payoff of each small player depends on his

type, his action, the large player’s action and the average of the small players’ actions.

Consider the following symmetric (in-type) action profile: aS = (aS,θ)θ∈Θ, aS,θ ∈ SS. That is, all small

players of type θ play action aS,θ. The average play of the small players corresponding to aS is given by

ăS,A(aS) =

{∑
θ
p(θ)aS,θ, if Θ is finite;∫

θ∈Θ
p(θ)aS,θdθ, if Θ is a compact subset of R.

Therefore, ăS,A ∈ SS. Consider game Gj : The set of best-responses of an individual small player of type θ,

corresponding to a large player’s action aL ∈ SL and average play of small players aS,A ∈ SS is denoted by

AjS,θ,B(aL, aS,A).

AjS,θ,B(aL, aS,A) = arg max
aS∈SS

πjθ (aS, aL, aS,A) .

Assumption B.1. (Symmetric-In-Type Best Response) For any action aL ∈ SL of the large player,

define the set of symmetric-in-type best response ÂjS,EQ(aL)⊆SS as follows:

ÂjS,EQ(aL) =
{
aS,A ∈ SS : aS,A = ăS,A(aS) where aS = (aS,θ)θ∈Θ and aS,θ ∈AjS,θ,B(aL, aS,A) for each θ ∈Θ

}
.

We assume that ÂjS,EQ(aL) is non-empty.

In general, ÂjS,EQ(aL) may not be singleton. We define:

AjS,EQ(aL) = arg min
aS,A∈Â

j
S,EQ

(aL)
Πj(aL, aS,A).

Assumptions 2.2 – 2.4 are as given in Section 2.3. Under Assumption B.1 and Assumptions 2.2 – 2.4, our

main result, Theorem 2.1, holds for this extension and the proof is identical.
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Appendix C: A Sufficient Condition for the (One-Shot) Nash Equilibrium to
Benefit the Large Player w/ the Intervention: Games of
Full-Complementarities and Intervention Induces Beneficial Actions

Our objective below is to present a set of sufficient conditions under which the payoff of the large player in

the one-shot Nash equilibrium in game G2 is higher than that in game G1. We first present a motivating

example.

C.1. A Linear-Quadratic Example

Suppose that AL =AS = [0,∞). Consider game Gj and the following payoff structure of the large and the

small players:

πj(aS,i, aL, aS,A) =
(
βjaL +αjaS,A

)
aS,i−

1

2
a2
S,i,

Πj(aL, aS,A) =
(
τ j + γjaS,A

)
aL−

1

2
a2
L.

where αj , βj , γj , τ j are strictly positive and 1− αj > βjγj . The best-responses of the large player and an

individual small player are:

a∗L(aS,A) = τ j + γjaS,A

a∗S,i(aL, aS,A) = βjaL +αjaS,A.

The symmetric best-response of the small players is:

a∗S,A(aL) =
βj

1−αj
aL.

The Nash equilibrium actions of the players (with small players playing symmetric actions) and their equi-

librium payoffs are as follows:

aNEL
j

=
τ j

1− βjγj

1−αj

aNES,i
j

= aNES,A
j

=
τ j

1−αj

βj − γj
(symmetric actions of small players)

ΠNEj =
τ j

2

2
(

1− βjγj

1−αj

)2 ,

πNE
j

=
τ j

2

2
(

1−αj

βj − γj
)2 .

Observe that (ΠNE)j is increasing in αj , βj , γj , τ j .16 The intervention G2 involves higher values for the

parameters, i.e., α2 ≥ α1, β2 ≥ β1, γ2 ≥ γ1 and τ2 ≥ τ1. Therefore,

Π2
NE ≥Π1

NE.

16 In this example, aNEL
j
, aNES,A

j
, ΠNEj , πNE

j
are all increasing in αj , βj , γj , τ j .
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C.2. Main Model

For the purpose of illustration, we restrict attention to action spaces being a compact subset of the real line,

i.e., AL ⊆R,AS ⊆R and payoffs Πj(aL, aS,A), πj(aS,i, aL, aS,A) continuous and differentiable throughout. For

technical reasons, we assume that aS := min{aS : aS ∈AS}>−∞. The key ideas below can be extended to a

setting with action spaces from a finite set. Recall the definition of a seemingly-beneficial intervention from

Assumption 2.2:

for any (aL, aS,A), Π2(aL, aS,A)≥Π1(aL, aS,A).

Consider the following assumptions:

(a) (Strict Concavity)
∂2Πj

∂a2
L

< 0 for all aS,A;
∂2πj

∂a2
S,i

< 0 for all (aL, aS,A).

(b) (Full Complementarities)

∂2Πj

∂aS,A∂aL
≥ 0 for all aS,A;

∂2πj

∂aLaS,i
≥ 0 for all aS,A,

∂2πj

∂aS,AaS,i
≥ 0 for all aL.

(c) (Intervention Induces Beneficial Actions)

∂Π2

∂aL
≥ ∂Π1

∂aL
for all aS,A;

∂π2

∂aS,i
≥ ∂π1

∂aS,i
for all (aL, aS,A).

(d) (Large Player Prefers Higher Average Play of the Small Players)

∂Πj

∂aS,A
≥ 0 for all aL.

We explain these conditions.

� Part (a) implies that Πj (resp., πj) is strictly concave in aL (resp., in aS,i) for any aS,A (resp., aL, aS,A).

We assume strict concavity to ensure uniqueness of the best-response functions. Our main result holds

with weak concavity, but involves refining the best-response correspondences and the resulting set of

equilibria. Let ajL,B(aS,A) (resp., ajS,B(aL, aS,A)) denote the best responses of the large player (resp., an

individual small player) in game Gj .

ajL,B(aS,A) = arg max
aL∈AL

Πj(aL, aS,A) (resp., ajS,B(aL, aS,A) = arg max
aS∈AS

πj(aL, aS, aS,A))

� Part (b) shows that the marginal increase in the payoff of the large player from a higher action is

increasing in the average of the small players’ actions (resp., the marginal increase in the payoff of an

individual small player from a higher action is increasing in the large player’s action and the average

of all the small players’ actions). Therefore,

dajL,B(aS,A)

daS,A
≥ 0 (resp.,

∂ajS,B(aL, aS,A)

∂aL
≥ 0 and

∂ajS,B(aL, aS,A)

∂aS,A
≥ 0).

Taken together, we have that game Gj corresponds to a game of full complementarities, i.e., the best-

response of every player is increasing in the actions of the other players.
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� Part (c) shows that for any aS,A (resp., aL, aS,A), the best-response functions are higher in game G2

than in G1, i.e.,

a2
L,B(aS,A)≥ a1

L,B(aS,A) (resp., a2
S,B(aL, aS,A)≥ a1

S,B(aL, aS,A)). (C.1)

Taken together, we have that the intervention induces higher (or beneficial) actions from all the players.

� Part (d) above is a special case of Assumption 2.3, applied to real-valued action spaces, i.e., for any

aL, the large player’s payoff in Gj is increasing the average play aS,A of the small players.

Furthermore, we assume the following assumptions that lead to the uniqueness of the symmetric best-response

of the small players:

(e) a1
S,B(aL, aS)>aS for all aL.

(f) There exists r < 1 such that
∂a

j
S,B

(aL,aS)

∂aS
≤ r.

Part (e) shows that the best-response of an individual small player at aS,A = aS is strictly larger than aS.

Parts (e) and (f) are technical conditions that are required for the uniqueness of the symmetric best-response

of the small players explained below. Consider game Gj and any aL ∈AL. The symmetric best response of

the small players, ajS,EQ(aL), solves

aS = ajS,B(aL, aS). (C.2)

From (e) and (f), it follows that ajS,EQ(aL) is unique; from (b), it follows that ajS,EQ(aL) is increasing in aL.

Combining this with (C.1), we have that

a2
S,EQ(aL)≥ a1

S,EQ(aL). (C.3)

(C.1) and (C.3) together show that the best-response function of the large player and the symmetric best-

response of the small players are higher in G2 than in G1. (C.3) above is identical to Assumption 2.4 if the

set of symmetric best-response for any aL is singleton. Further, from (e), we have that

ajS,EQ(aL)>aS for all aL. (C.4)

To see this, observe that for any aL, aS = aS does not solve (C.2).

Consider a (symmetric) Nash equilibrium of game Gj , denoted by NEj = (aNEL
j
, aNES,A

j
). From the definition

of a Nash equilibrium, NEj satisfies the following:

ajS,EQ(aNEL
j
) = aNES,A

j
and aL,B(aNES,A

j
) = aNEL

j
. (C.5)

Finally, we assume:

(g) game Gj admits a unique (symmetric) Nash equilibrium, denoted by NEj .

Lemma C.1. The equilibrium actions of all players in game G2 are higher than those in game G1, i.e.,

aNEL
2 ≥ aNEL

1
and aNES,A

2 ≥ aNES,A
1
.
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Proof: From (C.1), (C.3) and (C.5), it suffices to show that aNES,A
2 ≥ aNES,A

1
. From (C.5), aNES,A

j
solves

aS = ajS,EQ(ajL,B(aS)),

Recall from above that ajL,B(·) and ajS,EQ(·) are increasing in their arguments. Define φj(aS) =

ajS,EQ(ajL,B(aS))− aS. Using (C.1) and (C.3), we have that

φ2(aS)≥ φ1(aS). (C.6)

From (g), since NEj is unique, φj(·) has a unique root at aS = aNES,A
j
. From (C.4), we have that φ1(aS)> 0.

Therefore, for aS ∈ [aS, a
NE
S,A

1
), we have that φ1(aS)> 0. Combining this observation with (C.6), we have the

required result. Q.E.D.

Theorem C.1. The equilibrium payoff of the large player in game G2 is higher than that in game G1,

i.e.,

Π2(NE2)≥Π1(NE1).

Proof: From Assumption 2.2, we have:

Π2(NE1)≥Π1(NE1).

From Lemma C.1 and part (a), we have:

Π2(aNEL
1
, aNES,A

2
)≥Π2(NE1)

From the definition of a2
L,B(·), we have:

Π2(NE2)≥Π2(aNEL
1
, aNES,A

2
)

Combining the three inequalities above, we have the required result. Q.E.D.

Remark C.1. Our main model in Section C.2 assumes that Gj , j ∈ {1,2} are games of full complemen-

tarities and the intervention induces beneficial actions. In such games, the payoff of the large player in the

symmetric, one-shot Nash equilibrium in G2 exceeds that in G1. In Section C.1, we provide an example that

satisfies the proposed conditions (a)-(g) and the thus, the intervention leads to higher profits to the large

player in the one-shot (symmetric) Nash equilibrium. Recall our motivating examples in Section 3 considers

outcomes where the payoff of the large player in the symmetric one-shot Nash equilibrium in G1 exceeds

that in G2.

� In Section 3.1.1, recall from (3.2) that the station’s best-response is decreasing in the average quality of

the milk produced by the farmers. That is, the large player’s best-response is decreasing in the average

of the small players’ actions; thus, this is not a game of full complementarities.

� In Section 3.2.1, the best-response of an individual small player and the best-response of the large

player are decreasing in the average of the small players’ actions (i.e., this is not a game of full com-

plementarities).

That is, these examples do not satisfy the assumptions of the model in Section C.2. Hence, the one-shot

games lead to a lower equilibrium payoff to the large player.
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