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Abstract

Problem Definition: To entice customers to purchase, sellers on online platforms often

misrepresent the quality of their goods/services, e.g., by manipulating consumer opinion.

We analyze an oligopoly where sellers, heterogeneous in their true quality, compete by

jointly choosing their prices and the extent of manipulation.

Methodology: Non-Cooperative Game Theory, Choice Models, and Optimization.

Results: We solve for the unique equilibrium when price-setting firms can manipulate

their perceived quality and characterize the set of sellers that manipulate in equilibrium.

We identify an index called the propensity to manipulate, based on model primitives to

identify the set of sellers who have greater incentive to manipulate, and show that the set

of sellers that manipulate in equilibrium is upward-closed in the propensity to manipulate.

The extant literature has been mixed in its findings on which sellers have greater incentive

to manipulate. Our work helps reconcile the differing viewpoints in the extant literature

by providing a unified perspective.

Managerial Implications: We demonstrate the practical relevance of our model by

mapping it to an environment consisting of sellers who are differentiated in a star-rating

system based on their true rating and the volume of ratings. Depending on a seller’s rating

and volume of ratings, we identify three distinct regions that arise: a cost-prohibitive

region, a cost-dominant region, and a benefit-dominant region. The ability to map a

seller to one of these regions allows platform managers to understand a seller’s tendency

to manipulate consumer opinion dynamically over time.
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. . . I went to buy a pair of wireless earbuds. After I purchased them I got an

email . . . telling me that they would give me a free wireless charger if (and only if)

I gave a 5 star review. I contacted Amazon about it and they said it was against

their policy to do that but they were not going to investigate the matter.

— Customer reports on sellers’ efforts to manipulate ratings (Crockett, 2019).

The seller is obviously incentivizing people to leave positive reviews. Does

Amazon even care? I’m pretty sure nothing will happen to him and he’ll keep

outranking me because I guess I’m dumb enough to play by the rules.

— Seller complains on Amazon Seller Forums (Amazon Seller Central, 2019).

1 Introduction

Internet-enabled marketplaces, e.g., retail platforms like Amazon and Ebay, provide con-

sumers with the ability to not only engage in trade with sellers, but also provide a vast

amount of information to help guide their purchasing decisions. Information on sellers’ per-

formance is typically user-generated in the form of consumer opinion or feedback, consisting

of reviews and ratings, either on the platform or other product review forums. A vast liter-

ature, both in Marketing and Economics, has shown that consumers are influenced by such

information in their purchase decisions (Chevalier and Mayzlin, 2006; Chintagunta et al.,

2010; Mayzlin et al., 2014). Recent estimates by World Economic Forum (2021) suggest

that consumer opinions via online reviews influence $3.8 trillion of global commerce. In the

context of restaurants, Luca (2011) estimates that a 1-star increase on Yelp rating leads to

a 5-9% increase in revenues. Besides affecting consumers’ purchase decisions, information on

sellers’ performance plays a critical role in the platform’s listing strategy, e.g., in their search

rankings. For instance, Amazon ranks sellers on various performance metrics, and awards

the “buy-box” to their best performing sellers (Chen and Wilson, 2017).1 This virtual word-

of-mouth effect can form a reinforcing feedback loop that sets the sellers apart: those that

succeed and those that fail.

Due to the competitive advantage that superior consumer opinion bestows on sellers, it is

no surprise that sellers resort to manipulating these opinions via unfair means. A leading

example through which sellers affect consumer opinion is fake post-for-pay reviews. In its

simplest form, sellers solicit positive opinions that promote their products in exchange for a

monetary transfer. While such manipulation of consumer opinion is often illegal, in a recent

1The buy-box refers to the white box on the right side of the Amazon product detail page, where customers
add items for purchase to their cart. If left unchanged, Amazon assigns the default seller of a product to a top
performing seller. Shoppers rarely browse a product’s other sellers. Being awarded the buy-box is arguably
one of the biggest perks a seller can get on the Amazon marketplace. It is estimated that 82% of a product’s
sales go through the buy-box. See https://www.bigcommerce.com/blog/win-amazon-buy-box/.
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paper, He et al. (2022) show the existence of a large and active market for fake reviews.

Recent estimates by certain large platforms show that 4% of online reviews are fake (World

Economic Forum, 2021).2

Besides fake reviews, manipulation may be less brazen, e.g., through incentivized reviews,

where a customer is incentivized to provide a positive opinion; common examples of such

incentives include entry into a sweepstake, coupon, or a discount. While incentivized reviews

are banned on certain large platforms, e.g., Yelp and Amazon, other platforms allow for

incentivized reviews (Techcrunch, 2017; Yelp, 2017; Federal Trade Commission, 2022). In

other cases, manipulation may be completely innocuous, e.g., by providing additional after-

sale services and care. For example, a seller of phone cases helped customers who ordered

an incorrect product to fix the problem proactively, triggering a high-rating review from the

customer (Figure 1a). In another example, a seller offered a full refund without requiring

product return to a buyer posting a quality complaint, and the buyer subsequently revised

the poor review voluntarily without seller request (Figure 1b).

(a)

(b)

Figure 1. High-Rating Review for After Sale Care
Source: https://www.amazon.com

Irrespective of the nature of the manipulation, in all cases, sellers find it costly to manipulate

consumer opinion. In addition, sellers may face platform filters or sanctions that further drive

up the cost of manipulation. For example, Yelp uses automated software tools to identify and

2These estimates are based on self-reported data from Trip Advisor, Yelp, TrustPilot and Amazon (World
Economic Forum, 2021).
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remove reviews that are suspected to have been solicited (Yelp, 2017). Similarly, Amazon

uses technology to identify and delete consumer opinions that are deemed fraudulent on its

platform (He et al., 2022).

In this paper, we study the competitive landscape for online sellers that sell differentiated yet

substitutable products on a platform. Sellers simultaneously determine their product price

and their manipulation strategy, characterized by the extent to which sellers artificially inflate

consumer opinion. Each consumer chooses the product that yields the highest utility among

the available options. Consumer utility depends on product price and the perceived product

quality – that consists of the true quality from the product’s features, and the extent to

which the seller inflates consumer opinion. There are competing arguments relating to which

sellers have a greater incentive to manipulate consumer opinion. Dellarocas (2006) considers

a market where a seller signals their true quality to uninformed consumers via manipulation.

They show that manipulation is increasing in the true quality of the seller if the marginal

benefit from higher perceived quality is increasing in its true quality. That is, if sellers stand

to gain more from being perceived as high quality, then higher quality sellers manipulate

more. In contrast, He et al. (2022) find that manipulation is predominantly employed by

lower quality sellers. They argue that, while sellers of all qualities benefit from manipulation,

the higher quality sellers find it a lot harder to manipulate, as opposed to the lower quality

sellers. In this paper, we examine the equilibrium pricing and manipulation strategy of the

sellers in an oligopoly. In particular, when sellers are heterogeneous in their true qualities, how

does the equilibrium price and manipulation effort vary based on the true product quality?

In light of the contradicting findings of Dellarocas (2006) and He et al. (2022), we explore the

dynamics that drive sellers’ manipulation incentives, both in their tendency to manipulate

and in the extent of manipulation.

We also analyze how manipulation affects the platform and the consumers. Sellers’ decision

to manipulate consumer opinion affects their perceived product quality and their subsequent

sales. The equilibrium product prices and manipulation effort affect the sellers’ revenue.

As a result, a platform which charges a commission on each transaction would see an im-

pact on its revenue. In addition, the platform may be in a position to implement practices

that affect sellers’ ability to manipulate consumer opinion, e.g., by affecting the sellers’ cost

of manipulation. How should the platform exercise its leverage to optimize the platform

revenue?

Furthermore, in the presence of manipulation, consumers’ true utility from a product (ex-

post purchase) differs from that drives their purchase decision (ex-ante expectation). Are

consumers always losing in the manipulation game? In this paper, we build a model that

encompasses these considerations and conduct equilibrium analysis and optimization to derive

insights on seller competition, effect of review manipulation, and platform policy on customer

reviews.
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Before presenting our work, we emphasize that studying manipulation does not imply that

we consent to or endorse such practices. Rather, we believe understanding its impact and

the mechanism of its effect helps platforms and policy makers design strategies and policies

that are effective in curbing unethical practices, reduce trade frictions, and improve market

efficiency. Indeed, there has been significant interest in understanding the effects of manipu-

lation by practitioners (The Wall Street Journal, 2023) and regulatory agencies, e.g., the FTC

(Federal Trade Commission, 2023). Our work in this paper, on understanding the effects of

manipulation on competition, is crucial to policymakers and managers.

2 Related Literature

This paper is closely related to two streams of literature: (a) models of competition using

the MNL choice model and (b) empirical and theoretical models on firms’ manipulation of

customer opinion.

2.1 A Brief Background on The MNL Choice Model

Discrete choice models are widely used in Economics, Marketing, and OM to describe and

analyze how consumers choose among a collection of alternatives. These models assume that

consumers are random utility maximizers. The simplest and most studied discrete choice

model is the multinomial logit (MNL) model (McFadden et al., 1973; Berry, 1994). Arguably,

one of the most attractive features of the MNL model is in its empirical support to estimate

model parameters with data. In their pioneering work, McFadden et al. (1973) establish

the concavity of the log-likelihood function in the model parameters. Vulcano et al. (2012)

propose an expectation-maximization (EM) algorithm to incorporate incomplete data (e.g.,

the “no-purchase” option) with the MNL model. We borrow these techniques in estimating

our consumer choice model in Section 6.1 to conduct numerical experiments.

2.2 Models of Price Competition under The MNL Choice Model

The MNL model has been extensively employed for understanding firms’ pricing decisions

in oligopolistic competition in an economy. Due to the extensive nature of this stream, we

mention papers within OM that are closely related to our work. One of the earliest papers

in this stream is Anderson and De Palma (1992). They show the existence of an equilibrium

when symmetric multiproduct firms compete in prices under the MNL demand and conclude

that when all products have equal quality, the equilibrium prices are a fixed markup over the

production cost. Besanko et al. (1998) and Besanko et al. (2003) propose a framework to

empirically estimate logit demand systems where prices are assumed to be the equilibrium

outcomes of Nash competition among manufacturers and retailers. Their work explains

the bias that arises in model estimates when the endogeneity of prices is ignored. Earlier

work by Berry et al. (1995) and subsequent work by Berry et al. (2004) empirically analyze

the equilibrium prices under oligopolisitic competition in the US auto industry and obtain
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estimates of demand and cost parameters. The existence of a unique Nash equilibrium for

price competition under the MNL model is established; see Gallego et al. (2006), Bernstein

and Federgruen (2004) and Allon et al. (2011). Farahat and Perakis (2011) study models of

competition for differentiated products, where firms compete either in prices (Bertrand) or

quantity (Cournot), and demand follows the MNL model. They show that the outcomes under

Bertrand and Cournot competition are respectively equivalent to outcomes when decisions

are made sequentially: the Cournot outcome arises when the production decision precedes

the pricing decision, while the Bertrand outcome arises when the pricing decision precedes the

production decision. Li and Huh (2011) extend these models of competition to the case of the

nested logit model and provide quasi-closed form expressions for the equilibrium market share

and markups of firms. Gallego and Wang (2014) identify conditions that ensure a unique

equilibrium under the nested logit model with product-specific price sensitivities. Aksoy-

Pierson et al. (2013) and Lee and Çakanyildirim (2021) study price competition under the

mixed MNL model and identify conditions for a unique Nash equilibrium. In this paper, we

build upon this literature, particularly, that of Li and Huh (2011) to analyze the competition

of multiple sellers on a common platform and study the effect of review manipulation in this

setting.

Recently, Wang et al. (2022) analyze a model of competition under consumer choice models

where firms compete in prices, quality and associated service duration (e.g., maintenance and

warranty), where the associated service cost depends on the product quality: service costs are

lower if product quality is higher. Our work differs from theirs in that we analyze the types

of firms who manipulate consumer opinion and the effect of such manipulation on sellers, the

platform and consumers under the equilibrium manipulation and pricing strategy of firms.

2.3 Empirical and Theoretical Models on Manipulation of Consumer Opinion

Since the dawn of e-commerce, one of the most important roles of platforms that match buyers

and sellers has been the provision of information about products and sellers via consumer

opinion/feedback, typically absent in offline environments. Such consumer opinion arises via

ratings and review comments that are viewed by subsequent shoppers and influences their

purchasing decisions. For example, Chevalier and Mayzlin (2006) and Luca (2011) quantify

the marginal benefit from an increase in review rating in the context of books and restaurants,

respectively. Beyond influencing other shoppers’ purchasing behavior, consumer opinion plays

an important role in platform’s listing strategy (Chen and Wilson, 2017). As a result, sellers

may intentionally manipulate their ratings in order to be perceived more attractive to entice

more consumers. One of the earliest papers in this stream, Dellarocas (2003), discuss the

challenges and opportunities brought by such feedback mechanisms.

Theoretical work in this stream spans multiple disciplines including OM, Information Systems

(IS), Marketing, and Economics. We discuss papers closest to our work. Dellarocas (2006)

analyze a market where a seller signals its quality via manipulation. Consumers update their
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beliefs on the seller’s true quality based on observed signal (the sum of the true quality,

the extent of manipulation, and a noise term). They show that the extent of manipulation

depends on the marginal benefit from quality: If the marginal benefit is increasing in quality,

then the extent of manipulation is increasing in true quality. Mayzlin (2006) analyzes an

environment where sellers use promotional chat and consumers learn about the seller’s quality.

They show that in equilibrium, sellers with inferior products spend more resources purchasing

promotional reviews. Relatedly, Sun (2012) analyzes the effect of variance in product ratings,

and posits that a higher average rating corresponds to a higher quality, while a higher variance

corresponds to a niche product (i.e., extreme in fit).

Empirically, Luca and Zervas (2016) and He et al. (2022) test the economic incentives for

firms to purchase faudulant reviews and show the presence of a large and active market

for manipulation. Luca and Zervas (2016) show that a restaurant on Yelp is more likely

to manipulate if its reputation is weak. Further, restaurants are more likely to manipulate

when the intensity of competition is strong. He et al. (2022) reach a similar finding that

low quality sellers on Amazon are more likely to manipulate. Using controlled experiments,

Ananthakrishnan et al. (2020) analyze a platform’s information display strategy when it

contains a mix of true and fraudulent reviews. They find that consumer trust is higher when

the platform displays both true and fraudulent reviews instead of fully censoring fraudulent

reviews.

The main results from extant literature show the polarity in the types of sellers engaged

in consumer opinion manipulation. That is, either high-quality firms or low-quality firms

choose to manipulate, which appears to be contradicting. In addition, little is known about

how firms in the middle react. In this paper, we analyze how sellers’ decisions to manipulate

affects their prices under multi-seller competition when demand follows the MNL model.

First, we identify a unique Nash equilibrium in an oligopoly, deriving the (quasi) closed-

form expressions for the equilibrium markup and manipulation level. We then identify an

index to measure a seller’s propensity to manipulate and show that firms’ propensity to

manipulate may be increasing, decreasing, or unimodal in firms’ true quality, depending on

the cumulative volume of true reviews. These results identify a contiguous set of firms that

choose to manipulate in equilibrium. Eventually, we investigate the conditions where firms

and consumers may gain benefits or be hurt by review manipulation. We apply our theoretical

results using data from Wang et al. (2014) to better understand firms’ manipulation strategy.

3 Model

Consider a platform-enabled marketplace, consisting of n competing sellers, indexed by

i ∈ [n],3 and a mass of potential consumers, normalized to 1. Each seller markets and

sells a product with true quality ai, unit cost ci, and chooses price pi.
4 A representative

3We denote the set {1, 2, . . . , n} by [n].
4We refer to the product of seller i by product i. We use the terms seller and firm interchangeably.
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consumer purchases exactly one product from the [n]∪ {0} products, where 0 represents the

no-purchase option. The consumer utility from purchasing product i depends on the follow-

ing: the perceived quality of the product – the sum of true product quality ai and the extent

of manipulation xi – and the price. Specifically, the (perceived) consumption utility from

product i is as follows:

ui = ai + xi − bpi + ϵi (1)

where ϵi is an i.i.d standard Gumbel random variable and b is a price sensitivity parameter.

We normalize E[u0] = 0. The market-share of seller i, denoted by qi, follows from the standard

MNL model and is shown below.

qi =
eui

1 +
∑

j∈[n] e
uj

. (2)

Denote the profit margin (markup) of product i by mi, where mi = pi−ci. For mathematical

simplicity, define Ai as Ai = eai−bci . We refer to Ai – the cost-adjusted quality of seller i –

as the type of seller i, and refer to a seller with a higher value of Ai as a higher type. We

rewrite seller i’s market-share as follows:

qi =
eai+xi−b(mi+ci)

1 +
∑

j∈[n] e
aj+xj−b(mj+cj)

=
Aie

xi−bmi

1 +
∑

j∈[n]Ajexj−bmj
(3)

Let hi(xi) denote the cost of manipulation for seller i. The profit of seller i, denoted by πi,

is as follows:

πi = (pi − ci)qi︸ ︷︷ ︸
Profit from

Direct Sales

− hi(xi)︸ ︷︷ ︸
Cost of

Manipulation

= mi

 Aie
xi−bmi

1 +
∑

j∈[n]Ajexj−bmj︸ ︷︷ ︸
=qi

− hi(xi). (4)

To begin with, we analyze the outcome in the absence of any seller-manipulation and use

this as a benchmark. Subsequently, we analyze the outcomes in the presence of seller-

manipulation. We assume that the customers’ price sensitivity, each seller’s price and per-

ceived quality are common knowledge to all sellers in the oligopoly. The unit production

cost ci and manipulation xi do not need to be observable (public information), as the market

share of each seller depends on the observed price (i.e., the sum (mi + ci)) and the perceived

quality (i.e., the sum (ai + xi)) of other sellers but not their cost and manipulation directly.

Each seller responds to the observed prices and perceived quality of other sellers by choosing
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its markup and manipulation to maximizes its own profit; once no seller can increase their

profit by unilaterally deviating, an equilibrium is reached.5

4 Absence of Seller Manipulation

Suppose that manipulation is prohibitively expensive; thus, the sellers do not manipulate their

perceived quality, i.e., x = 0.6 We denote this setting by AM (absence of manipulation). It

has been established in the literature that a unique price equilibrium exists (e.g., Li and Huh

2011). We reproduce the results in this section to form a benchmark. Seller i’s market share

in (2) simplifies to:

qi =
Aie

−bmi

1 +
∑

j∈[n]Aje−bmj
. (5)

We analyze seller i’s best response enroute to identifying the equilibrium markups. Seller i’s

profit is

πi = miqi = mi

(
Aie

−bmi

1 +
∑

j∈[n]Aje−bmj

)
.

Fix m−i. Observe that πi is unimodal in mi. Seller i’s best-response satisfies:

mi(m−i) =
1

b(1− qi(mi(m−i),m−i))
. (6)

That is, mi(m−i) is the unique solution to the following univariate equation in terms of mi:

mi =
1

b

(
1 +

Aie
−bmi

1 +
∑

j ̸=i,j∈[n]Aje−bmj

)
.

Define f(z) as follows:

f(z) ≜ ze
1

1−z . (7)

f(x) is increasing in x, f(0) = 0 and f(1) = ∞. The following result identifies the equilibrium

markups and the resulting market share of each seller.

Theorem 1 (Equilibrium Outcome under AM). The equilibrium qAM0 is the solution to the

following equation:

q0 = 1−
∑
j∈[n]

f−1(Aiq0) (8)

The equilibrium market-share and markup of seller i is:

qAMi = f−1(Aiq
AM
0 ) and mAM

i =
1

b(1− qAMi )
. (9)

5Essentially, each seller responds to the observed values pi = mi+ci and âi = ai+xi of other sellers without
directly observing mi and xi despite that qi is written as a function of the markup vector and manipulation
vector.

6For any quantity of interest y, we denote (yj)j∈[n] by y, and (yj)j∈[n]\{i} by y−i.
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From Theorem 1, we have that in the absence of manipulation, a seller with a higher type

has a higher equilibrium margin, market share and profit.

5 Presence of Seller Manipulation (PM)

The result in Theorem 1 aligns well with the typical observation that stronger sellers do

well in a competitive market. Now, suppose that sellers can manipulate their perceived

quality. Are the high-type sellers less inclined to engage in quality manipulation because

they are doing well, or are they compelled to dominate the market even more when given

the chance to further elevate the market’s perception of their quality, barring legal and

moral obstacles? Recall from the discussion in Section 2.3 that the findings in the extant

literature has been limited but mixed. Dellarocas (2006) argue that higher quality sellers

have a greater incentive to manipulate while He et al. (2022) show empirical evidence that

manipulation is predominantly employed by lower quality sellers. While these insights are

derived either from a stylized theoretical setting or obtained from evidence in a particular

data set, we examine the same question by evaluating a multi-seller price competition under

the empirically-supported MNL demand model. We present a measure called “propensity to

manipulate” that identifies sellers more inclined to manipulate, which unifies the theoretical

and empirical observations in the literature.

Formally, seller i whose true quality is ai manipulates their perceived quality to be ai+xi. We

denote this setting by PM (presence of manipulation). Recall that xi denotes the extent of

manipulation by seller i, and hi(xi) denotes the cost of manipulation. We make the following

assumption on the cost of manipulation.

Assumption 1 (Cost of Manipulation). The cost of manipulation hi(x), i ∈ [n] satisfies the

following:

(a) hi(x) is smooth, non-negative, increasing and strictly convex in x ∈ ℜ+, i.e., hi(x) ≥
0, h′i(x) ≥ 0, h′′i (x) > 0 for x ≥ 0 with hi(0) = 0.

(b) h′′i (x) ≥ h′(x) for all x ∈ ℜ+.

Part (a) is straightforward and assumes that it becomes increasingly more difficult to ma-

nipulate. Part (b) states that the cost function is sufficiently convex, a regularity con-

dition that ensures πi is well-behaved, i.e., it excludes irregularities in manipulation cost

that may lead to multiple equilibria. In particular, observe that part (b) can be written as

hi(x) ≥ h′i(0) (e
x − 1). While part (b) might appear restrictive at first sight, we note that

this assumption applies to cost as a function of the resulting increment in perceived quality x,

not that of the manipulation input. In Section 6, we will show that a quadratic cost function

in terms of the number of solicited reviews (i.e., when a seller faces linear marginal cost to

solicit fake reviews) satisfies the above assumption.
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Below, we analyze seller i’s best-response. Subsequently, we analyze the equilibrium of this

game.

5.1 Best Response of Seller i

When a seller begins to manipulate, their perceived quality increases, affecting customer

choice and disturbing any market equilibrium. Others will respond and their response is two-

pronged - they may manipulate their own perceived quality and/or they may adjust their

prices. These actions will in turn trigger a new round of responses until an equilibrium, if

one exists, is reached. Consider seller i. Fix the decisions of all sellers other than i, i.e.,

(m−i,x−i). We analyze seller i’s best response (mi, xi). We proceed by first deriving the

optimal markup mi as a function of any given xi (Section 5.1.1), and then solving the optimal

xi (Section 5.1.2).

5.1.1 Optimal Markup mi

Fix xi. The following result identifies the optimal mi.

Lemma 1. Fix (m−i,x). πi is unimodal in mi. Seller i’s best-response mi(xi;x−i,m−i)

satisfies mi = 1/b(1− qi), where we omit the arguments of mi and qi for brevity. That is,

mi(xi;x−i,m−i) is the unique solution to the following univariate equation of mi:

mi =
1

b

(
1 +

Aie
xi−bmi

1 +
∑

j ̸=iAjexj−bmj

)
. (10)

In addition, mi(xi;x−i,m−i) is increasing in xi, increasing in m−i and decreasing in x−i.

Further, xi − bmi(xi;x−i,m−i) is increasing in xi.

Lemma 1 concludes that, fixing other sellers’ decisions, a seller would adjust its manipulation

and markup in tandem - a higher (lower) manipulation is matched with a higher (lower)

markup. Although the increase in manipulation and markup has opposing effect – the former

makes the seller’s product more attractive (due to higher perceived quality) whereas the latter

makes it less appealing (due to higher price) – the overall effect on product attractiveness,

reflected through the term xi − bmi, is dominated by extent of manipulation.

For convenience, we denote mi(xi;x−i,m−i) with mi(xi) and qi(xi,mi(xi)) with qi(xi). From

Lemma 1, all else equal, qi(xi) is increasing in xi.

5.1.2 Optimal Manipulation xi

Fix m−i,x−i. For any choice xi of seller i, their choice of mi is given by (10) in Lemma 1.

Below, we identify seller i’s optimal choice of xi (i.e., their best-response to m−i,x−i).

Lemma 2. Fix m−i,x−i. πi(xi) is quasi-concave in xi. The optimal x∗i is as follows:

(a) If qi(0)
b ≤ h′i(0), then, x

∗
i = 0.
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(b) Otherwise, x∗i is the solution to the following equation:

qi(xi)

b︸ ︷︷ ︸
Marginal Benefit from Manipulation

= h′i(xi)︸ ︷︷ ︸
Marginal Cost of Manipulation

. (11)

Part (a) of Lemma 2 shows the condition under which seller i chooses not to manipulate: If the

marginal cost of manipulation at xi = 0 is too high, then the benefit from manipulation does

not offset the cost of manipulation. Otherwise, seller i manipulates by a positive amount.

The extent of manipulation is identified in part (b). The LHS in (11) corresponds to the

marginal benefit from manipulation, while the RHS corresponds to the marginal cost of

manipulation. At optimality, the marginal benefit is equal to the marginal cost. While the

LHS and RHS of (11) are both increasing in xi, due to Assumption 1(b), we can show that

πi(xi) is quasi-concave in xi and the solution is unique.

Lemma 2 reveals the tension between two competing forces: the cost and benefit from ma-

nipulation. The marginal benefit from manipulation for a seller is proportional to its market

share. This seems to suggests that, at least in theory, a seller with a stronger product (hence

a larger market share) stands to benefit more from manipulation, as argued by Dellarocas

(2006). We will illustrate in later analysis that this insight is only a partial view both in

theory and in reality.

5.2 Equilibrium Outcome

We aim to identify the distinction between sellers that do and do not manipulate in the equi-

librium. We also examine how their pricing strategies differ depending on their manipulation

strategy. To that end, we derive a seller’s equilibrium pricing and manipulation strategy in a

competitive market. Let xPM and mPM denote the equilibrium manipulation and markups,

respectively. Let X denote the set of sellers that manipulate in equilibrium, i.e.,

X = {i : xPMi > 0}. (12)

Therefore, the set XC = [n] \ X consists of sellers that do not manipulate in equilibrium,

i.e., XC = {i : xPMi = 0}.

If the marginal cost of manipulation h′i(0) for all i ∈ [n] is too large, then no seller chooses

to manipulate (i.e., the set X is empty), and the equilibrium outcome under PM is identical

to that under AM. For a non-trivial outcome under PM, we make the following assumption.
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Assumption 2. There exists some seller i ∈ [n] s.t.

h′i(0)︸ ︷︷ ︸
marginal cost of manipulation

at xi = 0

<
qAMi

b︸︷︷︸
marginal benefit from manipulation to seller i

at xi = 0, x−i = 0

. (13)

Observe that the LHS is the marginal cost of manipulation at xi = 0, while the RHS is the

marginal benefit from manipulation at xi = 0, x−i = 0, where qAMi is the equilibrium market

share in the absence of manipulation.

Assumption 2 implies that, there exists at least one seller i such that, if no other seller

were to manipulate, seller i has a strict incentive to manipulate. Consequently, under this

assumption, the absence of manipulation does not constitute an equilibrium outcome (i.e.,

the set of sellers that manipulate in equilibrium, X, is non-empty).

For any i ∈ [n] and z ∈ [bh′i(0), 1), define the following:

gi(z) ≜ ze
1

1−z
−h′−1

i ( z
b ) = f(z)e−h′−1

i ( z
b ), (14)

where f(z) is as defined in (7). In Lemma B1 in Appendix B, we show that gi(z) is increasing

in z. Next, define γi (an index for seller i) as follows:

γi =


Ai

f(bh′
i(0))

, if h′i(0) <
1
b ;

0, otherwise.
(15)

The following result identifies each seller’s equilibrium manipulation and markup.

Theorem 2 (Equilibrium Outcome under PM). The equilibrium outcome is as follows:

(a) The set X is upward-closed in γi.

(b) The equilibrium market share of no-purchase, qPM0 , is the unique solution to the follow-

ing equation:

q0 = 1−
∑
i∈X

g−1
i (Aiq0)−

∑
i∈XC

f−1(Aiq0). (16)

The equilibrium market share, manipulation, and markup of seller i are:

qPMi =

{
g−1
i (Aiq

PM
0 ), if i ∈ X;

f−1(Aiq
PM
0 ), if i ∈ XC

, xPM
i =

 h′−1
i

(
qPMi
b

)
, if i ∈ X;

0, if i ∈ XC
, and mPM

i =
1

b(1− qPMi )
.

(c) In equilibrium, firm i ∈ X iff γi > 1/qPM0 .

12



Theorem 2 presents the unique equilibrium solution of the price-manipulation competition.

To understand part (a), suppose that γ1 ≤ γ2 ≤ . . . γn. Part (a) states that the the set of

sellers that manipulate in equilibrium consists of an upward-closed subset of [n]. That is,

X ∈ {{n}, {n − 1, n}, . . . , {1, 2, . . . , n}}. Since f and gi are monotone functions, the fixed

point equation (16) in part (b) is easily solved through a bisection search. The equilibrium

solutions of manipulation and markups follow. In sum, the price-manipulation equilibrium

is tractable and computationally efficient.

In the next result, we demonstrate how γi can be interpreted as a seller’s relative propensity

to manipulate, and help demonstrate its importance in understanding market outcomes.

5.3 Interpreting γi: Seller’s Propensity to Manipulate

Recall the definition of γi that measures a seller’s quality relative to their cost of manipulation.

Using Theorem 2, the following result characterizes the setX of sellers that manipulate, using

a threshold structure on γi.

Corollary 1 (γi Measures Seller i’s Propensity to Manipulate). Suppose γ1 ≤ γ2 ≤ . . . γn.

Suppose seller i manipulates in equilibrium. Then, all sellers with a higher propensity than

seller i will also manipulate in equilibrium.

Intuitively, γi is large if seller i’s has a higher type, or if they find it easy to manipulate (i.e.,

the marginal cost of manipulation, h′i(0), is low). Seller i is more likely to manipulate if γi

is high. Note that the index γi depends solely on exogenous model parameters and not on

the equilibrium outcome. Therefore, it is easy to compute. Recall Ai = eai−bci , h′i(0) is seller

i’s marginal manipulation cost at zero manipulation, and f(z) = ze
1

1−z is a positive and

increasing function on [0, 1] (sellers with bh′i(0) ≥ 1 will never manipulate; see Assumption

2). The value of γi presents a unified measure to detect and compare seller i’s propensity

to manipulate against others, and helps resolve contradicting arguments in the literature

regarding which sellers are more likely to manipulate, as we explain next.

5.4 Homogeneous Cost of Manipulation

Under a homogeneous cost of manipulation, say hi(x) = h(x) for all i, observe that the

denominator in (15) is fixed for all i. To identify the equilibrium X, from Lemma 1, it

suffices to compare Ai. Accordingly, we have the following result.

Lemma 3 (Sellers with Higher Type Manipulate More). Suppose that the cost of manipu-

lation is identical for all sellers, i.e., hi(x) = h(x) for all i. Suppose A1 ≤ A2 ≤ . . . ≤ An.

Then, γ1 ≤ γ2 ≤ . . . ≤ γn. In addition, for i ∈ [n−1], we have the following: (i) xPMi ≤ xPMi+1,

(ii) qPMi ≤ qPMi+1, and (iii) mPM
i ≤ mPM

i+1. Further, πPM
i ≤ πPM

i+1.
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Observe, from Lemma 3, that under a homogeneous cost of manipulation, a seller with

a higher type is more inclined to manipulate, exerts greater effort in manipulation, has a

higher profit margin, and a higher market share.

5.5 Homogeneous Types of Sellers

Under homogeneous seller types, say Ai = A for all i, observe that the numerator in (15)

is fixed for all i. To identify the equilibrium X, it follows from Lemma 1 to compare the

marginal cost of manipulation.

Lemma 4 (Sellers with Lower Manipulation Costs Manipulate More). Suppose that the types

of sellers are identical, i.e., Ai = A for all i. Suppose h′1(x) ≥ h′2(x) ≥ . . . ≥ h′n(x) for all

x ≥ 0. Then, γ1 ≤ γ2 ≤ . . . ≤ γn. In addition, for i ∈ [n − 1], we have the following: (i)

xPMi ≤ xPMi+1, (ii) qPMi ≤ qPMi+1, (iii) mPM
i ≤ mPM

i+1. Further, πPM
i ≤ πPM

i+1.

Lemmas 3 and 4 are special cases under which we glean, respectively, how seller quality and

cost affect their equilibrium manipulation behavior. Specifically, Lemma 3 depicts a scenario

in which we observe the effect described in Dellarocas (2006), namely, high quality sellers

manipulate more. Lemma 4 brings the effect of manipulation cost into focus. While the above

results are intuitive and capture the essence of certain dynamics, they are simplified special

cases that do not reflect the full reality. In practice, sellers vary both in cost and in quality.

More generally, their cost and quality also interact. That is, their cost of manipulation can

depend on their true quality. In online retailing, for example, customer review ratings are

usually capped at 5-star, and if high quality has already helped a seller achieve a high rating,

further improvement through manipulation is increasingly difficult and expensive. Below, we

consider a log-separable cost function that is quality-dependent.

5.6 Log-Separable Cost Functions

Suppose that the cost of manipulation depends on a firm’s cost-adjusted quality A in the

following log-separable form:

h(x;A) = H(A)h(x), (17)

where h(·) satisfies Assumption 1, and H(·) is continuous and non-negative over ℜ+. Conse-

quently, hi(x) = H(Ai)h(x). Define the type-elasticity of the cost of manipulation as follows:

εA =
∂ logH(A)

∂ logA
.

The type elasticity of the cost of manipulation determines the increase in the cost of manip-

ulation with an increase in the type of the seller.

Lemma 5. Suppose A1 ≤ A2 ≤ · · · ≤ An. Under the log-separable cost function in (17), we

have the following distinct outcomes:
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(a) γi is increasing in Ai iff the following condition holds: εA < 1
1+ z

(1−z)2
, where z = bh′(0)H(A).

Consequently, X is upward-closed in [n] iff the above condition holds.

(b) γi is decreasing in Ai if εA > 1. Consequently, X is downward-closed in [n].

The solution under log-separable cost function reveals the condition under which the insight

“high quality seller manipulates more” holds or not. Without these restrictions, it is not clear

which of the two competing effects dominate. While higher quality sellers gain more from

manipulation, the type elasticity of the cost of manipulation, εA, determines the increase in

the cost of manipulation with an increase in the seller’s type. Part (a) of Lemma 5 shows

that if εA is small, then sellers with higher types manipulate. Part (b) of Lemma 5 shows

that if εA is large, then sellers with lower types manipulate.

Beyond the special cases above, γi may not be monotone in Ai. In such a case, it is un-

clear which sellers manipulate in equilibrium. In what follows, we describe a heterogeneous

cost function that applies specifically to the star rating system frequently observed in retail

platforms that provide ratings and reviews. We analyze the equilibrium outcome under PM.

Subsequently, in Section 6.1, using a real-world data set, we demonstrate how the degree to

which sellers manipulate (i.e., xi) varies with their true quality (ai).

6 An Illustration with Real-World Data: Seller Manipulation by Soliciting

Fake Reviews

To illustrate our results, we examine an environment where sellers in an online platform

manipulate their perceived value by soliciting fake reviews. Consider a star rating system

employed by the platform on a scale of 0 to R, i.e., each seller is associated with a (true)

star-rating between 0 and R, that the seller may manipulate by soliciting promotional (fake)

reviews. Often, online star-rating systems adopt a one-star to five-star scale (e.g., Amazon)

where the lowest star rating is one, not zero. In this case, we can map five-star to a value of

R = 4 and one-star to the value 0 or use an alternative affine transformation, without loss of

generality; similar technique applies to alternatively scaled, e.g., three-star or ten-star rating

systems.

In this section, we begin with an analytical characterization of seller’s propensity to manip-

ulate under the star-rating system, and how it changes with the seller’s true rating average

and volume. Employing iso-γ curves, we then partition the cardinal space of rating average

and volume into three regions – cost prohibitive, cost dominant, and benefit dominant – and

show that the distribution of sellers among these regions determines the exhibited relation-

ship between seller type and manipulation tendency. This analysis lays the foundation for

our numerical experiments based on a real-world dataset in Section 6.1.

In the absence of any manipulation, let seller i’s true rating be denoted by rtri where rtri ∈
[0, R]. Let vtri denote the volume of true ratings for seller i on the platform. Seller i ma-
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nipulates their perceived rating to be higher than rtri . Suppose the seller purchases vfi fake

reviews with rating R.7 Then, the observed rating for seller i is:

robi =
vtri

vtri + vfi
rtri +

vfi
vfi + vtri

R = rtri +
vfi

vtri + vfi

(
R− rtri

)
.

Empirically, we observe robi and vtri + vfi . Let a consumer’s utility from purchasing product i

be denoted as follows:

ui = β0 + βrr
ob
i + βppi + ϵi (18)

= β0 + βrr
tr
i︸ ︷︷ ︸

ai

+βr
vfi

vtri + vfi

(
R− rtri

)
︸ ︷︷ ︸

xi

+βppi︸︷︷︸
−bpi

+ϵi. (19)

Recall our consumer utility in (1); the quantities ai, xi and −bpi correspond to the quantities

shown above. The seller’s type corresponds to Ai = eβ0+βrrtri +βpci . That is, given cost ci,

a seller’s type only depends on the true rating rtri . To purchase y fake reviews, let the cost

incurred by a seller be the following:8

Cost to purchase y fake reviews = k1y + k2y
2 (20)

where k1, k2 > 0. Since seller i purchases vfi fake reviews, their cost of manipulation is

k1v
f
i + k2v

f
i
2
. By algebraic transformation of xi = βr

vfi
vtri +vfi

(R− rtri ) to express vfi and then

substituting in (20), we have

hi(xi) = k1

(
vtri

xi
βr

R− rtri − xi
βr

)
+ k2

(
vtri

xi
βr

R− rtri − xi
βr

)2

. (21)

The cost of manipulation in (21) satisfies Assumption 1 if k2 is sufficiently larger than k1 (see

Appendix E for a detailed proof). Observe that the cost function above depends on both the

true rating rtri and the volume of true reviews vtri .

For ease of notation, define the function l(z) for z ∈ (0, 1): l(z) = z+
(

z
1−z

)2
. We define two

useful threshold values of vi.

v =
βrR

(−βp)k1
. (22)

Let v denote the largest root of the following equation:

v = vl−1
(
(−βp)k1v

)
.

7We focus on manipulation by acquiring additional fake reviews instead of modifying existing poor reviews.
8While the cost to purchase y fake reviews is identical across sellers, the effect of y fake reviews is asym-

metric across sellers. Specifically, from a fixed number of fake reviews purchased, seller i experiences a small
(resp., large) xi if v

tr
i is large (resp., small) or rtri is large (resp., small).

16



It can be verified that if βr ≤ 1
R , then v = 0; otherwise, v > 0. Since l−1(y) ∈ (0, 1) for any

y > 0, it follows that v < v. Recall the definition of γi from (15), which corresponds to the

index that measures seller i’s propensity to manipulate. Using (15) and (21), we have:

γi =


exp(β0+βrrtri +βpci)

f

(
(−βp)k1v

tr
i

βr(R−rtr
i
)

) , if vtri +
βrrtri

(−βp)k1
< v;

0, otherwise.

(23)

The condition vtri +
βrrtri

(−βp)k1
< v is equivalent to h′i(0) ≤ 1

b . If this condition does not hold,

then γi = 0 (from (15)). In particular, observe from (23) that if vtri ≥ v, then γi = 0 regardless

of the value of rtri . The following result shows how seller i’s propensity to manipulate (γi)

changes with the seller’s true rating (rtri ) and volume of ratings (vtri ).

Lemma 6. (a) Fix rtri . The propensity to manipulate γi is strictly decreasing in the volume

of ratings vtri and drops to 0 if vtri > v − βrrtri
(−βp)k1

.

(b) Fix vtri ≤ v.

(i) Suppose vtri > v. Then, γi is decreasing in rtri if rtri ≤ (−βp)k1
βr

(
v − vtri

)
and drops

to 0 if rtri ≥ (−βp)k1
βr

(
v − vtri

)
.

(ii) Suppose vtri ≤ v. Then, γi is unimodal in rtri . That is, denote r as follows:

r =
(−βp)k1

βr

(
v − vtri

l−1 ((−βp)k1vtri )

)
(24)

γi is increasing in rtri iff rtri < r, is decreasing iff r < rtri <
(−βp)k1

βr

(
v − vtri

)
, and

drops to 0 if rtri ≥ (−βp)k1
βr

(
v − vtri

)
. Further, r is decreasing in vtri .

In Figure 2(a), we plot the iso-γ curves in the volume-rating coordinates using (23), with

each point on a given contour corresponding to a fixed value of γ. The value of γ – the

propensity to manipulate – increases in the direction marked by the arrow. As shown in part

(b) of Lemma 6, v is the threshold value of vtri that distinguishes two scenarios: (i) if vtri ≥ v,

then γi monotonically decreases in rtri , which leads to the monotone iso-γ curves, and (ii) if

vtri < v, then γi is unimodal in rtri , which leads to the unimodal iso-γ curves (the dashed red

curve that passes (0, v) marks the mode of each iso-γ curve). The unshaded area bordered

by the downward sloping line that passes (0, v) satisfies vtri +
βrrtri

(−βp)k1
≥ v, hence γ = 0 in this

region.

In Figure 2(b), we explain in detail the regions that arise in the rating-volume coordinates

that distinguish seller behavior.

• Cost-Prohibitive Region: If either γi = 0, or 0 < γi ≤ 1, the marginal benefit from

manipulation does not exceed the marginal cost at xi = 0, and hence sellers do not
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(a) Iso-γ contours in the (rtri , v
tr
i ) space.

(b) Regions that arise in the (rtri , v
tr
i ) space

Figure 2. Bottom: The white region corresponds to γi = 0, the blue region corresponds to
0 < γi < 1 and the red and yellow region correspond to γi > 1. In particular, the red (resp.,
yellow) region corresponds to the case where γi is increasing (resp., decreasing) in rtri for
fixed vtri . Values of parameters: Left: −βp = k1 = ci = 1, R = 5, βr = 1, β0 = 0. Middle:
−βp = k1 = ci = 1, R = 5, βr = 1, β0 = 3. Right: −βp = k1 = ci = 1, R = 5, βr = 0.2,
β0 = 3.

manipulate. In Figure 2(b), the condition γi = 0 corresponds to the white region, while

the condition 0 < γi ≤ 1 corresponds to the blue region. In both these regions, sellers

do not manipulate since their cost of manipulation is large.

• Cost-Dominant Region: Recall the definition of r from (24) in Lemma 6(b)(ii). We

refer to the region between rtri ≥ r(vtri ) and γi > 1 as the cost-dominant region (the

yellow region). In this region, a seller’s propensity to manipulate decreases with its true

quality.
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• Benefit-Dominant Region: In the first figure of Figure 2(b), the region below rtri ≤ r(vtri )

and γi > 1 is referred to as the benefit-dominant region (the red region). Here, a seller’s

propensity to manipulate increases in it’s true quality. The iso-curve γ = 1 separates

the cost-prohibitive region from the cost- and benefit-dominant regions. Notice that if

r(v) ≤ 0, then we obtain the second plot in Figure 2(b), in which the benefit-dominant

region is not bordered by the iso-γ curve of γ = 1; if βrR < 1, then v = 0, and hence

the benefit-dominant region disappears (the third plot in Figure 2(b)).

Fixing vtri , in the benefit-dominant (resp., cost-dominant) region, γi increases (resp., de-

creases) in rtri . In other words, seller i’s propensity to manipulate increases with its true

quality in the benefit-dominant region but decreases with its true quality in the cost-dominant

region. What is the managerial interpretation of this observation? The effects of manipula-

tion are manifested through the benefit from the manipulated increase in rating against the

manipulation cost. All else equal, sellers with higher quality benefit more from manipulation

but also incur higher manipulation cost; which of the two effects dominates depends on a

seller’s location in the volume-rating graph. Finally, we remark that, a seller located in the

region γ > 1 does not necessarily manipulate in equilibrium. They only do so if γi exceeds

1/qPM0 , which depends on the characteristics of all participating sellers.

One of the unique contributions of our paper is that a manager can identify these regions (i.e.,

the cost-prohibitive region, the cost-dominant region, and the benefit-dominant region), as

well as the iso-γ curves in the volume-rating coordinates based solely on model parameters.

For any given set of sellers in the competition, we can precisely locate each individual seller

on the graph and identify the region it belongs to. This ability provides not only a managerial

tool for understanding sellers’ tendency to manipulate, but also instructive to a manager to

monitor and predict how a seller’s dynamically changing status of (rtri , v
tr
i ) shifts its propensity

to manipulate as time evolves. The above can be accomplished without any equilibrium

computation. To identify the exact set of sellers that manipulate in equilibrium, i.e., the set

X, we note that X is upward closed with respect to γ and satisfies γi > 1/qPM0 , where qPM0
is obtained through equation (16) in Theorem 2.

Recall the contradicting findings of Dellarocas (2006) and He et al. (2022) on the relationship

between quality and manipulation, the former suggesting that high quality (i.e., high rtri )

sellers are more likely to manipulate whereas the latter concluding that low quality (i.e.,

low rtri ) sellers are more likely to manipulate. The following corollary is a consequence of

Lemma 6 and sheds light on resolving the contradicting views in the existing literature and

provides a unified perspective.

Corollary 2. Suppose Assumption 2 holds, vtri = v for all i ∈ [n], and rtr1 ≤ rtr2 ≤ . . . rtrn .

Then, X is contiguous. In addition,

(a) The set X is downward-closed in rtri if rtr1 ≥ r(v).
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(b) The set X is upward-closed in rtri if rtrn ≤ r(v).

Corollary 2 shows the various outcomes that emerge in equilibrium. On the one extreme,

X can be downward closed, e.g., in markets for mature products. This conforms with the

insights in He et al. (2022), who show that low quality sellers are likely to manipulate. On

the other extreme, X can be upward closed, e.g., in nascent markets. This conforms with

the predictions in Dellarocas (2006). In general, the set X may be neither upward- nor

downward-closed; however, it is contiguous. Because all of the above scenarios are likely to

occur in practice, one must take precaution in generalizing the observed trend. For example,

when a dataset indicates a negative association between review ratings and manipulation,

one cannot extend the association to sellers in other markets or even to extrapolate the trend

to draw conclusions regarding other sellers in the same market. We illustrate this potential

pitfall with Figure 3.

Figure 3. A snapshot of seller characteristics.

In Figure 3, sellers represented by red circles fall into the benefit-dominant region B and sellers

marked with blue stars fall into the cost-dominant region C. Suppose the current dataset

contains only red sellers in region B. Then the dataset may exhibit a negative relationship

between quality and manipulation, while controlling for the volume of reviews. Likewise, if the

available dataset contains only sellers in region C, it may reveal a positive connection between

quality and manipulation. Clearly, extrapolating either exhibited trend to all sellers in the

market can lead to misunderstanding of the market and ill-informed business decisions. Our

findings caution decision makers against such fragmented views of the market. This insight

applies not only to existing sellers in a market, but also future entrants to the market.

6.1 Numerical Application

To demonstrate the practical applications of our model, we assemble data from three datasets

published by Wang et al. (2014) pertaining to electronic products, where the authors scrape
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amazon.com over a span a period of 24 weeks beginning February 1st, 2012. The first dataset

comprises of transaction data for 2,163 unique products, the second dataset contains detailed

product characteristics for 794 products, such as Operating System, RAM, processor, pro-

cessor brand, storage size, average battery life (in hours), screen size, screen resolution, item

weight, wireless type, mobile broadband, and webcam resolution and the third dataset com-

prises of customer reviews and provides information at the reviewer level, including review

contents, post date, and review ratings.

6.1.1 Model Calibration

First, we select a set of n = 11 products that are close substitutes, with similar product

features such as storage size and screen resolution. These products also have complete trans-

actional information spanning the entire duration of T = 24 weeks. We infer the marginal

production cost for each product from its selling price and the profit margin from the firms’

financial statements if they are publicly listed, or the profit margin of their public competitors

as a proxy for products sold by private firms. As Amazon provides information only on sales

rank and not sales for each product in their data, we use a mapping from sales rank to sales

rate to infer product sales in each time period. This approach has been widely employed in

the literature, e.g., see Chevalier and Goolsbee (2003) and He et al. (2022). The mapping

between sales sit of product i ∈ [n] in period t ∈ [T ] and its sales rank Rit is as follows:

sit = e
β
θ

1

(Rit − 1)
1
θ

(25)

Previous research, e.g., by Chevalier and Goolsbee (2003); He et al. (2022) report estimates

of θ = 1.2 and β = 9.6. We use these estimates to calculate sit based on Rit. Then, customer

utility uit for product i ∈ [n] in period t ∈ [T ] is modeled as shown in (18):

uit = β0 + βrr
ob
it + βppit + ϵit,

where robit is the observed rating for product i at the start of period t, pit is the price for

product i in period t, and ϵit is i.i.d. Gumbel distributed. The price pit is directly observed

from the data, but robit is inferred as the average rating amongst all posted ratings until the

start of period t. That is, we assume that the observed rating in period t is the average of

the ratings “thus far” (i.e., until period t − 1). Let rit denote the set of ratings posted for

product i in period t. For any period t ≥ 2, we calculate robit as follows:

robit =

∑
t′∈[t−1]

∑
r∈rit′

r

| ∪t′∈[t−1] rit′ |
.
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From the above consumer choice model, we have qit (the probability that a representative

consumer purchases product i at time t) as follows:

qit =
eβ0+βppit+βrrobit

1 +
∑

j∈[n] e
β0+βppjt+βrrobjt

. (26)

Since our data does not contain information about no-purchase (s0t), we employ the Expectation-

Maximization (EM) algorithm (McLachlan and Krishnan, 2007) to estimate the parameters

β0, βp, βr. The results from our EM estimation procedure are as follows:

Table 1. Estimation Results

βp βr β0

Estimate -0.0017∗∗∗ 0.103∗∗∗ 0.0109
Std. Error 0.000098 0.004 0.54

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01

6.1.2 Application and Results

Using the results from our estimation in Section 6.1.1 above and the analysis in Section 6,

we predict the extent of manipulation in equilibrium for each of the n firms in our data.

However, the dataset does not indicate whether each review is true or fake. We train a

Long Short-Term Memory (LSTM) recurrent neural network model on a separate dataset

provided by Salminen et al. (2022), where each review is labeled true or fake. While the

nature of products across the two datasets is different, previous studies in Computer Science

and Natural Language Processing report commonalities among fake reviews (Fang et al.,

2020; Mohawesh et al., 2021).

From Table 1, βr = 0.103 < 1
R = 0.25. Therefore, in this application, the benefit-dominant

region vanishes and sellers are located in either the cost-prohibitive region (if 0 ≤ γ ≤ 1)

or cost-dominant region. In Figure 4, we plot the regions in the volume-rating space and

illustrate how the regions shift as the cost parameter changes. Recall that the regions 0 ≤ γ ≤
1 are cost-prohibitive and the region below the γ = 1 curve is the cost-dominant region. Sellers

located below the γ = 1/qPM0 curve (i.e., satisfy γ > 1/qPM0 ) manipulate in equilibrium and

those above the γ = 1/qPM0 curve (i.e., satisfy γ < 1/qPM0 ) do not manipulate. When k1 is low

(k1 = 0.1; the left plot in Figure 4), all eleven sellers are in the cost-dominant region, and all

but one manipulate in equilibrium. As k1 increases (k1 = 1; the middle plot in Figure 4), three

sellers shift from the cost-dominant region to cost-prohibiting regions (one with γ = 0 and

two with γ ∈ (0, 1)) and eight remains in the cost-dominant region, of which five manipulate

in equilibrium; when k1 increases to 3, six sellers shift to cost-prohibiting regions, and five

remains in the cost-dominant region, of which only two manipulate. We remark that in these

graphs, only the iso-γ curve γ = 1/qPM0 requires equilibrium computation, whereas the rest
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are computed directly from model parameters. Therefore, the empirical versatility of the

MNL model and our approach enable an easy-to-understand tool for market analysis that is

both theoretically sound and managerially appealing, as illustrated in Figure 4.

Figure 4. Seller Behavior with Changes in Cost of Manipulation.

Finally, the absence of the benefit-dominant region leads to the observation that, ceteris

paribus, low quality sellers tend to manipulate, which ties back to the phenomenon emphasized

in He et al. (2022). Our analysis indicates that, such phenomenon could occur for a specific

market under certain conditions on model parameters but should not be viewed as universal

truth.

7 Comparison of Equilibrium Outcomes

In an ideal world, sellers do not manipulate for ethical or legal considerations. In practice,

such compliance is not guaranteed. Measures to prohibit manipulation and efforts to screen

manipulated reviews are costly to platforms. To better understand the economic implications

of manipulation, we compare the market outcomes in the absence and presence of seller

manipulation. Several practical questions arise in this comparison. First, is manipulation

profitable to sellers who choose to manipulate? Do these sellers see a higher market share by

engaging in manipulation? Second, how does the presence of manipulation affect the industry

and platform’s revenues? Third, from a policy maker’s standpoint, how does manipulation

affect consumer welfare?

7.1 Effect of Manipulation on Market Shares, Profit Margins and Prices

Recall the definition of X (the set of sellers that manipulate in equilibrium) from (12). Define

the set of sellers that have a higher market share and higher profit under PM as follows:

Q = {i : qPMi ≥ qAMi } and Π = {i : πPM
i ≥ πAM

i }.

23



The following result characterizes the equilibrium market share of the no-purchase option.

Lemma 7. The market share of the no-purchase option is lower in the presence of manipu-

lation, i.e., qPM0 < qAM0 .

Consequently,
∑

i q
PM
i >

∑
i q

AM
i , i.e., the overall sales volume increases. Therefore, ∃i s.t.

qPMi > qAMi , i.e., at least one seller would sell more under PM than AM. Hence, Q is non-

empty. For analytical tractability, in the remainder, we assume that sellers are homogeneous

in their cost of manipulation. The next result confirms our intuition that sellers who do not

manipulate would suffer in market share (relative to that under AM). However, it does not

ensure that the converse or the inverse holds true. That is, sellers who manipulate do not

necessarily gain market share. Further, recall that mi =
1

b(1−qi)
holds in equilibrium under

both AM and PM (Theorem 1 and Lemma 1); this also means that sellers who manipulate

do not necessarily have a higher profit.

Theorem 3. Suppose A1 ≤ A2 ≤ . . . ≤ An and sellers are homogeneous in their cost of

manipulation. The following statements hold:

(a) Suppose i ∈ XC. Then, qPMi < qAMi (i.e., i ∈ QC) and mPM
i < mAM

i . Consequently,

πPM
i < πAM

i . Stated differently, XC ⊆ QC ⊆ ΠC, or equivalently, Π ⊆ Q ⊆ X.

(b) The sets Q is upward-closed in [n].

Part (a) shows that if seller i does not manipulate, then their market share is strictly lower,

i.e., XC ⊆ QC. Since the equilibrium markup and market share move in tandem (mi =
1

b(1−qi)
), seller i’s profit is also strictly lower. Part (a) can also be stated as Π ⊆ Q ⊆ X.

An implication from this result is the necessity for seller i to manipulate in equilibrium so

that their profit under PM exceeds that under AM. Nevertheless, it does not guarantee that

manipulation increases seller i’s profit (relative to AM). That is, it remains to be seen whether

sellers that manipulate can even lose market-share and have lower profits under PM.

Part (b) states that the set Q is of the form {j∗, j∗ + 1, . . . , n} for some j∗ ∈ [n]. From

Lemma 7, we have that Q is non-empty. Together, we have that seller n ∈ Q. This reinforces

the insight that, under homogeneous cost, sellers with higher quality has a higher tendency

to manipulate. However, the same cannot be said about Π. In what follows, we show that

the ability to manipulate may hurt all sellers in equilibrium, i.e., it is possible that Π = ∅,
using a simple example.

7.2 Can Manipulation Hurt All Sellers?

Consider the homogeneous cost function h(x) = λ(ex − 1), where λ > 0 is a cost-multiplier.

Assumptions 1 and 2 imply that λ < qAMn
b . We analyze the impact of an increase in the cost

of manipulation – specifically, λ – on the market outcome.

24



Theorem 4. Suppose A1 ≤ A2 ≤ . . . ≤ An. The following statements show the effect of an

increase in λ on the equilibrium market share and profits of each seller.

(a) Consider seller i ∈ X (resp., i ∈ XC). The equilibrium market share of seller i is

decreasing (resp., increasing) in λ.

(b) Define τ as τ =
(∑

i∈X
Ai

g′(qPMi )

)
/
(
1 +

∑
i∈X

Ai

g′(qPMi )
+
∑

i∈XC
Ai

f ′(qPMi )

)
. Suppose the following

condition holds:

(1− τ)(2− qPMn )qPMn /b < λ < qPMn /b. (27)

Then, for any i ∈ [n], seller i’s profit is increasing in λ.

Part (a) of Theorem 4 shows the effect of an increase in the cost of manipulation on a

seller’s equilibrium market share. An increase in the cost of manipulation results in a higher

market share for sellers that do not manipulate, and a lower market share for sellers that

manipulate. More importantly, part (b) of Theorem 4 shows the effect an increase in the

cost of manipulation can have on a seller’s equilibrium profit. In particular, the profit of

all sellers increases as it becomes harder to manipulate, i.e., as the cost of manipulation

increases. Stated differently, all sellers benefit from an increase in the cost of manipulation.

As an illustration of Theorem 4, consider the case where n = 2, and the sellers are identical,

i.e., A1 = A2. Let ι(q) = q(2 − q)
(
1− 2(1−q)2

2q2−6q+3

)
. Let q(1) be the first real root of the

equation 2q3 − 10q2 + 12q − 3 = 0; q(1) ≈ 0.339. Equation (27) can be written as follows.

ι(q(1))

b︸ ︷︷ ︸
≈ 0.152

b

< λ <
qAMi

b
=⇒ dπPM

i

dλ
> 0 for i ∈ {1, 2}.

Since qAMi is increasing in Ai, the above condition holds for high values of Ai. This result

illustrates a paradoxical example akin to the prisoner’s dilemma. Although sellers may be

forced to manipulate in order to compete with others, every seller is better off had manip-

ulation been preventable altogether. Since individual sellers do not benefit by unilaterally

deviating from their equilibrium decision, all sellers are worse-off.

It is often argued that policing manipulation by sellers is an important activity of the platform.

Often times, a platform can take measures to make manipulation more costly, and may hold

the power to solve the dilemma. However, is it in the platform’s interest to do so? If,

empowered by platform technology, the consumers become sophisticated and are able to

(partially) discern manipulation by sellers. How does this ability influence the outcome?

7.3 Effect of Consumer Sophistication and Platform Technology

In this section, we extend our main analysis to allow for consumer sophistication and the

platform to be able to hinder manipulation. Suppose seller i manipulates by an amount
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xi. Instead of an increment of xi in customer utility, suppose that their perceived quality

increases by an amount δxi, where 0 < δ ≤ 1. That is, the consumer’s (ex-ante) utility from

seller i is:

ui = ai + δxi − bpi + ϵi

δ can be interpreted in several ways. For example, δ corresponds to consumers’ sophistication

in detecting a seller’s manipulation (δ = 1 signifies complete naivety and δ = 0 implies

complete sophistication). δ can also be interpreted as a platform’s technology that hinders

a seller’s manipulation. For example, several online platforms actively monitor the reviews

posted for a seller and detect/flag potential fake reviews. The result below illustrates the

effect of δ.

Theorem 5. A seller’s propensity to manipulate γi is increasing in consumer naivety δ.

Consequently, for any δ, δ′ such that δ ≤ δ′, the set of sellers that manipulate under δ are

contained in δ′, i.e., Xδ ⊆ Xδ′. The market-share for no purchase option qPM0 is decreasing

in δ.

While it can be verified that the market-share, markup and profits of sellers that do not

manipulate decrease in consumer naivety, the same cannot be said about each seller that

manipulates, due to a similar effect as discussed in Section 7.2. Intuitively, greater sophisti-

cation among consumers or a better platform technology is equivalent to an increase in the

cost of manipulation. Consequently, as discussed in Section 7.2, an increase in consumer

sophistication or a better platform technology to hinder manipulation may, paradoxically,

benefit all sellers.

7.4 Implications for Platform’s Revenue and Consumer Surplus

Suppose the platform uses a revenue-sharing/commission contract with the sellers. We in-

vestigate whether the platform benefits from manipulation. To do so, we compare industry

revenues (i.e., the sum of revenues of all sellers) in the absence and presence of manipulation.

Platform’s Revenue = Revenue Sharing Rate× Industry Revenues,

where Industry Revenues ∝
∑
i∈[n]

piqi.

Theorem 6. Suppose A1 ≤ A2 ≤ . . . ≤ An and sellers are homogeneous in their cost of

manipulation. Further, suppose that the marginal production costs satisfy c1 ≤ c2 ≤ . . . ≤ cn.

Then, the industry revenues, and hence the platform’s revenue, are higher in the presence of

manipulation than that in its absence, i.e.,
∑

i∈[n] p
PM
i qPMi >

∑
i∈[n] p

AM
i qAMi .

Therefore, judging only from a single-shot revenue standpoint, the platform may have an

interest in promoting manipulation, particularly if the nature of manipulation is innocuous,

for example, by enticing good reviews via additional after-sale services and care. On the
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other hand, when manipulation involves untruthful, unethical, and even illegal means, the

platform then has to evaluate the consequence of potential backlash and adverse effect on

its platform users and its own reputation. While these considerations may also be relevant

for individual sellers, they are more critical for the platform which depends more on return

customers than one-time purchases. Toward that end, we examine the effect of manipulation

on customer satisfaction, measured by the expected consumer surplus, in addition to revenue.

It can be shown that the expected consumer surplus in the absence of manipulation is:

CSAM =
(
γe − log qAM0

)
/b

where γe is the Euler constant. A detailed derivation of consumer surplus under the MNL

model under AM and PM is provided in Appendix D. In the presence of manipulation, we

assume that the manipulation xi influences the perceived quality but does not add to true

consumer surplus. We derive the expected consumer surplus based on the true quality of the

products:

CSPM =
(
γe − log qPM0 − xPM

)
/b.

where xPM ≜
∑

i∈[n] x
PM
i qPMi is proportional to the average level of manipulation in the

market. Although it seems natural to predict that consumer surplus is negatively affected

when manipulation is present, it is not always the case in the equilibrium.

From the expressions of consumer surplus,

CSAM < CSPM ⇔ xPM < log
(
qAM0 /qPM0

)
.

Therefore, it is possible that allowing manipulation may either increase or decrease the ex-

pected consumer surplus, and determining the direction of the effect requires solving the

respective equilibria and checking the condition xPM > log
(
qAM0 /qPM0

)
.

In Figure 5, we present the outcomes in a duopoly with asymmetric firms that face heteroge-

neous costs of manipulation hi(x) = λi(e
x − 1), and the comparison of equilibrium consumer

surplus under AM and PM. We vary the price-sensitivity parameter b and the consumer

naivety parameter δ, plot the regions with different market outcomes and denote the region

in which CSPM > CSAM occurs (red dotted region) in Figure 5(a). Contrary to intuition,

under certain circumstances, the presence of manipulation may improve consumer surplus.

Recall that sellers’ response to competition is two-pronged: they may manipulate their per-

ceived quality and/or adjust their price, depending on the cost of manipulation and consumer

price sensitivity. In the example depicted, the two sellers have a notable difference in quality

(a2 >> a1), so a dominant share of the consumer surplus is derived from seller 2. When price

sensitivity is very low, both sellers tend to compete more via manipulation than via prices,
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(a) δ = 1 (b) λ1 = 0.3, b = 0.25

Figure 5. Comparison of consumer surplus in an asymmetric duopoly under AM and PM
with a heterogeneous cost of manipulation hi(x) = λi(e

x − 1). Values of Parameters:
a1 = 1.2, a2 = 3.2, c1 = c2 = 0.1, λ2 = 3.

and a greater extent of manipulation leads to higher prices by both sellers. Consequently,

consumers are hurt (as shown in the gray region). On the other hand, when consumers are

sufficiently price sensitive and λ1 is small, while it is more efficient for seller 1 to compete

via manipulation than price because of its low manipulation cost, seller 2 finds it expen-

sive to manipulate, so they respond by choosing a lower price. Since the consumer surplus

is predominantly derived from seller 2, a lower price by seller 2 contributes to an overall

enhancement in total consumer welfare. In essence, the manipulation by the low-quality-low-

manipulation-cost firm (seller 1) drives the high-quality-high-manipulation-cost firm (seller

2) to depress its price, leading to an increase in consumer surplus. Figure 5(b) focuses on

this scenario and illustrates the compounding effect of δ (consumer naivety). Note that, in

this specific instance, seller 2 refrains from engaging in manipulation due to a high cost of

manipulation. Greater naivety of consumers allows for a higher extent of manipulation by

seller 1, and leads to lower prices by seller 2. This drives up consumer surplus until seller 2’s

contribution to consumer surplus becomes less dominant, in which case we observe a trend

reversal.

The examples above illustrate the mechanism for a possible positive effect of manipulation

on consumer surplus – that is, manipulation by some sellers can create pricing pressure on

other sellers and benefit consumers. We emphasize that, this is not to say that manipulation

is beneficial to the market when consumers are not directly hurt; rather, sellers who do not

manipulate are the ones who are unfairly placed at a disadvantage and forced to foot all

damages of manipulation by others.
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8 Conclusion

As consumers place increasing emphasis on online product reviews in purchasing decisions,

sellers face strong pressure to elevate the rating of their product in order to compete with

others. Consequently, sellers may be incentivized to adopt various means of review manipu-

lations. Contradicting views exist in the literature regarding the sellers’ tendency of review

manipulation vis-à-vis the strength/quality/type of sellers. One view argues that high qual-

ity sellers have more to gain from manipulation and are more likely to manipulate whereas

others present empirical evidence that sellers with low ratings exhibit stronger tendency to

manipulate. We construct a model of multi-seller competition in which each seller sets its own

price and review manipulation level to maximize profit. We solve for the unique equilibrium

solution, and present a comprehensive characterization of the set of sellers that manipulate

in equilibrium. We make several unique contributions to this literature: (i) by identifying an

index γ directly computable from model parameters to scale each seller’s relative propensity

to manipulate, and proving that the set of sellers who manipulate is upward closed with

respect to this propensity index, (ii) by partitioning the volume-rating space into regions

that exhibit distinctive patterns of the iso-γ curve, equivalently, patterns of how manipula-

tion propensity is affected by sellers’ true quality, and (iii) by mapping our model of review

manipulation to a star-rating system and illustrating how to apply it to a real-world data

set. A key takeaway is that the two contradicting views regarding the relationship between

seller quality and tendency to manipulate can be reconciled through our model and results:

We establish the separation of the benefit-dominant region and cost-dominant region. In the

cost-dominant region, low-quality sellers tend to manipulate, while in the benefit-dominant

region, high-quality sellers tend to manipulate. Hence observations of which types of sellers

manipulate in a given application or market may only reflect a censored snapshot view of a

market. Decision makers need to be cautious in making generalizations.

Finally, we remark that the model we presented is potentially applicable to settings with

real quality-enhancing efforts, such as implementing pre- or after-sale customer care and

providing other value-adding perks. In this case, the equilibrium analysis and solution meth-

ods in Sections 3-5 carry through without technical difference and our model and methods

serve as a novel contribution to this literature as well: The propensity-to-manipulate index,

reinterpreted as propensity-to-enhance index, can similarly characterize the types of sellers

who choose to engage in quality-enhancing efforts in an oligopoly with both price and qual-

ity competition and the effect of sellers equilibrium behavior. The discussion of consumer

surplus in Section 7.2 certainly is specific to manipulating perceived quality instead of real

quality, the latter of which is mathematically simpler to capture. The model in Section 6

applies specifically to the context of star-rating review manipulation and price competition

and serves as a unique contribution to the literature.
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A Proofs of Technical Results

This appendix provides the proofs of all technical results in the main paper. Besides this appendix, we also
provide a supplementary appendix, Appendix B, that provides some helpful results.

A.1 Proof of Results in Section 4

Proof of Theorem 1. For completeness, we show firm i’s best-response. We then solve for the equilibrium
outcome.

The derivative of πi w.r.t mi is:
dπi

dmi
= qi +mi

(
dqi
dmi

)
From (5), we have

dqi
dmi

=
Aie

−bmi(−b)
(
1 +

∑
i∈[n] Aie

−bmi

)
−Aie

−bmiAie
−bmi(−b)(

1 +
∑

i∈[n] Aie−bmi

)2 = −bqi(1− qi).

Substituting this back in the RHS of dπi
dmi

:

dπi

dmi
= qi (1− bmi(1− qi)) .

Consider the term inside the brackets in the RHS above. This term is decreasing in mi. To see this,

bmi(1− qi) = bmi

(
1 +

∑
j ̸=i Aje

−bmj

1 +
∑

j ̸=i Aje−bmj +Aie−bmi

)

Both terms in the RHS above are increasing in mi; therefore, 1 − bmi(1 − qi) is decreasing in mi. For given
m−i, let mi(m−i) denote the unique value of mi s.t. 1 − bmi(1 − qi) = 0. Then, for fixed m−i,

dπi
dmi

> 0 iff

mi < mi(m−i). That is, πi is unimodal in mi; at optimality, mi = mi(m−i) =
1

b(1−qi)
.

To solve for mi(m−i), we can write the mi(m−i) as:

bmi =
1

1− qi
=⇒ bmi − 1 =

qi
1− qi︸ ︷︷ ︸

q0+
∑

j ̸=i qj

=
Aie

−bmi

1 +
∑

j ̸=i,j∈[n] Aje−bmj

=⇒ mi(m−i) =
1

b

(
1 +

Aie
−bmi

1 +
∑

j ̸=i,j∈[n] Aje−bmj

)
. (28)

The RHS is strictly decreasing in mi. Thus, a unique fixed point to the RHS exists. Further,

(bmi − 1)ebmi−1 =
Aie

−1

1 +
∑

j ̸=i,j∈[n] Aje−bmj
=⇒ bmi − 1 = W

(
Aie

−1

1 +
∑

j ̸=i,j∈[n] Aje−bmj

)

=⇒ mi(m−i) =
1

b

(
1 +W

(
Aie

−1

1 +
∑

j ̸=i,j∈[n] Aje−bmj

))

where W(·) denotes the Lambert-W function.9

We rewrite (5) as follows:
qi = Aie

−bmiq0,

9 Fix k > 0. The equation zez = k has a unique solution at z = W(k). Further,

dz

dk
=

1

ez(1 + z)

∣∣∣∣
z=W(k)

=
1

eW(k) + k
.
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where q0 = 1

1+
∑

j∈[n] Aje
xj−bmj

. Substituting for mi from (6) in the RHS above, we have:

qie
1

1−qi = Aiq0 =⇒ qi = f−1(Aiq0)

Below, we identify the equilibrium q0.

q0 = 1−
∑
j∈[n]

qj =⇒ q0 = 1−
∑
j∈[n]

f−1(Aiq0)

Since f(x) is increasing in x, with f(0) = 0 and f(1) =∞, the RHS is decreasing in q0; thus, the solution to
q0 exists and is unique. Combining the solution to q0 and (6), we have the required result.

A.2 Proofs of Results in Section 5

Proof of Lemma 1. Fix x. Let Ăj denote the following.

Ăj = Aje
xj .

Observe that the above problem is identical to that in Section 4, except for Aj → Ăj . For fixed m−i,x, the
unimodality of πi in mi follows from (4) and the above observation. Therefore, FOC’s identify the optimal
mi. Using (28), we have:

∂πi

∂mi
= qi +mi

∂qi
∂mi

= 0 =⇒ bmi − 1 =
Ăie

−bmi

1 +
∑

j ̸=i Ăje−bmj
=

Aie
xi−bmi

1 +
∑

j ̸=i Ajexj−bmj

=⇒ mi =
1

b

1 +
Aie

xi−bmi

1 +
∑

j ̸=i Ajexj−bmj︸ ︷︷ ︸
1

1−qi

 .

For fixed (m−i,x), (10) has a unique solution for mi. Furthermore, (10) can be written as:

(bmi − 1)ebmi−1 =
Aie

xi−1(
1 +

∑
j ̸=i Ajexj−bmj

) =⇒ mi =
1

b

[
1 +W

(
Aie

xi−1

1 +
∑

j ̸=i Ajexj−bmj

)]
. (29)

From (29), mi is increasing in xi, increasing in m−i, and decreasing in x−i.

Further, xi − bmi(xi) is increasing in xi. To see this, consider the derivative of xi − bmi(xi):

d

dxi
(xi − bmi) = −b

dmi

dxi
,

We show that the RHS is positive. Consider the second term. Using (10),

b
dmi

dxi
=

Aie
xi−bmi

1 +
∑

j ̸=i Ajexj−bmj

(
1− b

dmi

dxi

)
=⇒ b

dmi

dxi
=

Aie
xi−bmi

1 +
∑

j∈[n] Ajexj−bmj
= qi.

Since (1− qi) > 0 we have that xi − bmi is increasing in xi.

Proof of Lemma 2. Since πi = miqi − h(xi), the marginal effect of manipulation on seller i’s profits (i.e.,
derivative of πi w.r.t xi) is:

dπi

dxi
= qi

dmi

dxi︸ ︷︷ ︸
effect of manipulation on

infra-marginal units

+ mi
dqi
dxi︸ ︷︷ ︸

effect of manipulation on the

marginal unit

− h′
i(xi)︸ ︷︷ ︸

marginal cost of manipulation

. (30)
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The first term in the RHS of (30) is the effect on the inframarginal units, while the second term is the effect
on the marginal unit. First, using (10), we write mi as follows:

(bmi − 1)ebmi−1 =
Aie

xi−1

1 +
∑

j ̸=i Ajexj−bmj
.

Differentiating both sides w.r.t. xi, we have:

d

dxi

(
(bmi − 1)ebmi−1

)
=

d

dxi

(
Aie

xi−1

1 +
∑

j ̸=i Ajexj−bmj

)

=⇒
(
b2mie

bmi−1
)

︸ ︷︷ ︸
= ∂

∂mi
((bmi−1)ebmi−1)

dmi

dxi
=

Aie
xi−1

1 +
∑

j ̸=i Ajexj−bmj

=⇒ dmi

dxi
=

1

b2mi

(
Aie

xi−bmi

1 +
∑

j ̸=i Ajexj−bmj

)

=
1

b2mi

(
qi

1− qi

)
=

qi
b
.

Next, we can write dqi
dxi

as follows:

dqi
dxi

=
∂qi
∂xi

+
∂qi
∂mi

dmi

dxi
.

Using (3),

∂qi
∂xi

=
(Aie

xi−bmi)(1 +
∑

j Aje
xj−bmj )− (Aie

xi−bmi)(Aie
xi−bmi)

(1 +
∑

j Ajexj−bmj )2

= qi(1− qi).

∂qi
∂mi

=
(Aie

xi−bmi(−b))(1 +
∑

j Aje
xj−bmj )− (Aie

xi−bmi)(Aie
xi−bmi(−b))

(1 +
∑

j Ajexj−bmj )2

= −bqi(1− qi).

Therefore,
dqi
dxi

= qi(1− qi)
2. (31)

Combining the above, (30) simplifies to:

dπi

dxi
=

(
q2i
b

+miqi(1− qi)
2

)
− h′

i(xi)

Substituting for mi from (10), we have:

dπi

dxi
=

qi
b︸︷︷︸

marginal benefit from

manipulation

− h′
i(xi)︸ ︷︷ ︸

marginal cost of

manipulation

. (32)

The critical point(s), denoted by x∗
i , solve:

qi(xi,mi(xi)) = bh′
i(xi). (33)

At the critical point(s), xi = x∗
i , the second derivative is:

d2π

dx2
i

∣∣∣∣
xi=x∗

i

=
d

dxi

(
dπi

dxi

) ∣∣∣∣
xi=x∗

i

=

(
qi(1− qi)

2

b
− h′′

i (xi)

) ∣∣∣∣
xi=x∗

i

= h′
i(x

∗
i )(1− qi)

2 − h′′
i (x

∗
i ) < 0. (due to Assumption 1(b))

Therefore, πi(xi) is quasi-concave. Consequently, the following hold:
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1. If qi(0)
b

< h′
i(0), then,

dπi
dxi

< 0 for all xi > 0.

2. If qi(0)
b

> h′
i(0), then, FOC’s identify the unique interior maximum.

For convenience, define f̆(z), z ∈ [0, 1), as follows:

f̆(z) ≜

(
z

1− z

)
e

1
1−z . (34)

f̆(z) is increasing in z. The solution to the FOC in (33) can be expressed as follows.

f̆−1

(
Aie

xi

1 +
∑

j ̸=i Ajexj−bmj

)
︸ ︷︷ ︸

qi(xi)

= bh′
i(xi). (35)

While the LHS and RHS are both increasing in xi, since πi is quasi-concave in xi, it follows that the above
equation has a unique solution for xi.

Proof of Theorem 2. From Lemmas 1 and 2, we have seller i’s choice of mi and xi. Depending on xPM
i , one

of the following applies to seller i:

• If xPM
i = 0 (i.e., i ∈XC), then, using (10), we have the following:

qi =
Aie

− 1
1−qi

1 +
∑

j Aje
xPM
j −bmPM

j

= Aie
− 1

1−qi q0

=⇒ qie
1

1−qi︸ ︷︷ ︸
f(qi)

= Aiq0 =⇒ qi = f−1(Aiq0).

• If xPM
i > 0 (i.e., i ∈X), then, using (10) and (11), we have the following:

qi =
Aie

h′−1
i ( qi

b )−
1

1−qi

1 +
∑

j Aje
xPM
j −bmPM

j

= Aie
h′−1
i ( qi

b )−
1

1−qi q0

=⇒ qie
1

1−qi
−h′−1

i ( qi
b )︸ ︷︷ ︸

gi(qi)

= Aiq0 =⇒ qi = g−1
i (Aiq0).

We solve for the equilibrium value of q0. Since q0 = 1−
∑

i∈[n] qi, we have:

q0 = 1−
∑
i∈X

g−1
i (Aiq0)−

∑
i∈XC

f−1(Aiq0).

Since f(·) and gi(·), i ∈ [n] are increasing functions, and f(0) = g(0) = 0 and f(1) = g(1) = ∞, the RHS is
decreasing in q0. Further, at q0 = 0 (resp., q0 = 1), the LHS is strictly smaller (resp., larger) than the RHS.
Hence, the above equation has a unique solution for q0 ∈ (0, 1). Denote this solution by qPM0 . Substituting
qPM0 in the expression for qi, we have

qPMi =

{
f−1(Aiq

PM
0 ), if i ∈XC;

g−1
i (Aiq

PM
0 ), if i ∈X.

(36)

Substituting qPMi in (10) and (11), we have:

mi =
1

b(1− qPMi )
and xPM

i =

{
0, if i ∈XC;

h′−1
i

(
qPMi
b

)
, if i ∈X.

Proof of Lemma 1. Consider the equilibrium outcome under PM (the equilibrium quantities are denoted by
the superscript PM). Recall the definition of X in (12). From Assumption 2, we have that, in equilibrium,
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∃i ∈ [n] s.t. xPM
i > 0. That is, X ̸= ∅. Also, recall the definition of γi in (15), and the equilibrium outcome

(the market share, profit margin and the extent of manipulation by each firm) under PM in Theorem 2.

First, recall from (13) that if h′
i(0) > 1

b
, then it is a dominant strategy for firm i to not manipulate. From

(15), we have that γi = 0 if h′
i(0) > 1

b
. Combining these two statements, we have γi = 0 =⇒ i ∈ XC. To

prove our result, it then suffices to restrict attention to the set of of firms s.t their γ is strictly positive.

Consider two such firms, say i and j s.t. 0 < γj ≤ γi. We show the following two claims.

(a) Suppose i ∈XC. Then, j ∈XC.

(b) Suppose j ∈X. Then, i ∈X.

Consider part (a). Since firm i ∈XC (i.e., xPM
i = 0), the following holds:

i ∈X
C =⇒ h′

i(0) ≥
qPMi
b

=⇒ bh′
i(0) ≥ f−1(Aiq

PM
0 )

=⇒ f
(
h′
i(0)

)
≥ Aiq

PM
0

=⇒ 1

qPM0
≥ γi.

Since γj ≤ γi, it follows that γj ≤ 1

qPM0
, i.e.,

f
(
bh′

j(0)
)
≥ Ajq

PM
0

We will show that j ∈ XC by contradiction. Suppose j ∈ X. Then, it must be the case that h′
j(0) <

1
b
qPMj

(i.e., xj > 0). Recall from Theorem 2 that if j ∈ X, then qPMj = g−1
j (Ajq

PM
0 ). Using the definition of gj(·) in

(14) and the fact that gj(·) is monotone, we have:

bh′
j(0) < qPMj =⇒ gj

(
bh′

j(0)
)
< gj(q

PM
j ) (since gj(·) is monotone),

=⇒ f
(
bh′

j(0)
)
< Ajq

PM
0 (since gj

(
bh′

j(0)
)
= f

(
bh′

j(0)
)
and qPMj = g−1

j (Ajq
PM
0 )),

=⇒ 1

qPM0
< γj .

which is a contradiction. Thus, j ∈XC.

Consider part (b). Since j ∈X (i.e., xPM
j > 0), the following holds:

j ∈X =⇒ bh′
j(0) < qPMj

=⇒ bh′
j(0) < g−1

j (Ajq
PM
0 )

=⇒ gj
(
bh′

j(0)
)
< Ajq

PM
0

=⇒ f
(
bh′

j(0)
)
< Ajq

PM
0 (since gj

(
bh′

j(0)
)
= f

(
bh′

j(0)
)
),

=⇒ 1

qPM0
< γj .

Since γi ≥ γj , it follows that γi >
1

qPM0
, i.e., f (bh′

i(0)) < Aiq
PM
0 . We will show that i ∈ X by contradiction.

Suppose i ∈ XC. Then, it must be the case that h′
i(0) ≥

qPMi
b
. From Theorem 2, since i ∈ XC, qPMi =

f−1(Aiq
PM
0 ). Substituting the above, we have f(bh′

i(0)) ≥ Aiq
PM
0 , or equivalently, 1

qPM0
≥ γi, which is a

contradiction. Therefore, i ∈X.

Proof of Lemma 3. Consider any i ∈ [n − 1]. Below, we prove (a), i.e., xPM
i ≤ xPM

i+1. Since qi is increasing in
xi, part (b) follows. Since mPM

i is increasing in qi, part (c) follows.

We show (a) by contradiction. Suppose that xPM
i+1 < xPM

i . We divide the analysis into two cases:
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• Suppose 0 < xPM
i+1 < xPM

i . Since the cost of manipulation is homogeneous across sellers,

xPM
i+1 < xPM

i =⇒ h′−1

(
qPMi+1

b

)
< h′−1

(
qPMi
b

)
=⇒ qPMi+1 < qPMi

=⇒ g−1(Ai+1q
PM
0 ) < g−1(Aiq

PM
0 ) (from (36))

=⇒ Ai+1 < Ai,which is a contradiction.

• Suppose 0 = xPM
i+1 < xPM

i . It must be the case that

qPMi+1

b
≤ h′(0) <

qPMi
b

.

Rewriting the above,

qPMi+1 ≤ bh′(0) < qPMi =⇒ f−1(Ai+1q
PM
0 ) ≤ bh′(0) < g−1(Aiq

PM
0 )

=⇒ Ai+1q
PM
0 ≤ f

(
bh′(0)

)
= g

(
bh′(0)

)
< Aiq

PM
0

=⇒ Ai+1 < Ai, which is a contradiction.

We now compare seller profits, i.e., we show πPM
i ≤ πPM

i+1.

• Suppose xPM
i > 0 (equivalently,

qPMi
b

> h′(0)). Then, seller i’s profit can be written as:

πi = miqi − h(xi) =
qi

b(1− qi)
− h

(
h′−1

(qi
b

))
. (37)

The RHS is increasing in qi. To see this,

dπi

dqi
=

1

b

(
1

(1− qi)2
−

qi
b

h′′(h′−1( qi
b
))

)
The first term inside the brackets is strictly larger than 1, while the second term inside the brackets is
smaller than 1 (from Assumption 1(b)). To see this, let ŷ = h′−1( qi

b
). The term inside the bracket can

be written as 1
(1−qi)2

− h′(ŷ)
h′′(ŷ) . Therefore, the RHS is positive. Therefore, qPMi ≤ qPMi+1 =⇒ πPM

i ≤ πPM
i+1.

• Suppose xPM
i = 0 (equivalently,

qPMi
b
≤ h′(0)). Then, seller i’s profit can be written as:

πi = miqi =
qi

b(1− qi)
(38)

The RHS is increasing in qi. We have the following two cases, depending on the value of xPM
i+1:

– Suppose xPM
i+1 = 0. Since πi is increasing in qi, and qPMi ≤ qPMi+1, we have that πPM

i ≤ πPM
i+1.

– Suppose xPM
i+1 > 0(= xPM

i ). Observe that:

πPM
i =

qPMi
b(1− qPMi )

<

(
q

b(1− q)

) ∣∣∣∣
q=bh′(0)

<
qPMi+1

b(1− qPMi+1)
− h

(
h′−1

(
qPMi+1

b

))
= πPM

i+1.

The first inequality follows from (38) and the second inequality follows from (37).

In other words, the equilibrium profit πi is increasing in qi in both cases (see (37) and (38)), and is
continuous at the point of non-differentiability (i.e., qi = bh′(0)).

Proof of Lemma 4. Recall the definition of γi:

γi =
Ai

f (bh′
i(0))

Since Ai = A for all i ∈ [n] and h′
1(x) ≥ h′

2(x) ≥ . . . h′
n(x), we have that γ1 ≤ γ2 ≤ . . . γn. Since X is

upward-closed in γi, we have that ∃ i∗ s.t. XC = {1, 2, . . . , i∗ − 1} and X = {i∗, i∗ + 1, n}.
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Consider i ∈XC. We have that qPMi = f−1(AqPM0 ). Hence, qi = qj for any i, j ∈XC.

Consider i ∈ X. We have that gi(q) = f(q)e−h′−1
i ( q

b ). Since h′
1(x) ≥ h′

2(x) . . . h
′
n(x), it follows that gi(x) ≥

gi+1(x). Therefore, q
PM
i ≤ qPMi+1 for i ∈X.

Since mi is monotone in qi, the comparison of mi follows. For i ∈ X, since xi = h′
i
−1 ( qi

b

)
, it follows that

xPM
i ≤ xPM

i+1.

Proof of Lemma 5. Substituting for hi(x,A) = H(A)h(x) in the definition of γi from (15), we have:

γi =
Ai

f (bH(Ai)h′(0))
.

Therefore,
dγi
dAi

=
Ai

f(z)

(
1

Ai
− f ′(z)

f(z)
bh′(0)H′(Ai)

)
where z = bh′(0)H(Ai). Further, 0 < z < 1. In the RHS, the term outside the bracket is positive. It suffices
to focus on the term within the brackets. The term inside the brackets is positive iff the following holds:(

1

z
+

1

(1− z)2

)
z
H′(Ai)

H(Ai)
<

1

Ai
⇔

H′(Ai)
H(Ai)

1
Ai

<
f(z)

zf ′(z)

⇔ ∂ logH(Ai)

∂ logAi︸ ︷︷ ︸
εA

<
1

1 + z
(1−z)2

Since the RHS is strictly less than 1, it holds that if εA > 1, then, γi is decreasing in Ai.

A.3 Proofs of Results in Section 6

Proof of Lemma 6. Observe from equation (21) that the quantity bh′
i(0) can be written as

bh′
i(0) =

k1v
tr
i (−βp)

(R− rtri )βr
=

vtri

v − βrr
tr
i

(−βp)k1

.

where v = βrR
(−βp)k1

is as shown in (22). First, recall from (15) that if bh′
i(0) > 1, then γi = 0. The condition

can be equivalently stated as vtri > v − βrr
tr
i

(−βp)k1
. Rearranging the terms, we have:

γi = 0⇔ vtri +
βrr

tr
i

(−βp)k1
> v.

Therefore, if vtri > v, then, γi = 0 for all rtri .

If the above condition does not hold, then γi can be written as:

γi =
Ai

f(bh′
i(0))

=
exp(β0 + βrr

tr
i + βpci)

f

(
vtr
i

v−
rtr
i
βr

(−βp)k1

)

Since the RHS is decreasing in vtri for vtri < v − βrr
tr
i

(−βp)k1
, we have part (a) of the result.
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Next, we show part (b), i.e., we understand how γi changes with rtri . For convenience, let ⋆ denote the term(
vtr
i

v−
βrrtr

i
(−βp)k1

)
. From above, we require that ⋆ ∈ (0, 1). Then, we have:

dγi
drtri

=
exp(β0 + βrr

tr
i + βpci)

f (⋆)︸ ︷︷ ︸
positive

βr −
f ′ (⋆)

f (⋆)
(⋆)′︸ ︷︷ ︸

♠


The first term (outside the brackets) in the RHS is positive. Recall the definition of f(·) from (7). Using the

identity that for any z ∈ (0, 1), f ′(z)
f(z)

simplifies to 1
z
+ 1

(1−z)2
and straightforward algebraic simplification, the

term in the bracket denoted by ♠ simplifies to:

♠ = βr −
(
1

⋆
+

1

(1− ⋆)2

)
︸ ︷︷ ︸

f′(⋆)
f(⋆)

(
⋆2βr

(−βp)k1vtri

)
︸ ︷︷ ︸

⋆′

=
βr

(−βp)k1vtri︸ ︷︷ ︸
positive

(−βp)k1v
tr
i −

(
⋆+

(
⋆

1− ⋆

)2
)

︸ ︷︷ ︸
l(⋆)


︸ ︷︷ ︸

♣

.

The first term in the RHS is positive. Let l(·) denote the following:

l(z) = z +

(
z

1− z

)2

We have l(0) = 0, limz↑1 l(z) = ∞, and l(·) is strictly increasing. Hence, for any y > 0, l−1(y) ∈ (0, 1).
Consequently, we have

dγi
drtri

> 0 ⇔ ♣ > 0

⇔ ⋆ < l−1 ((−βp)k1v
tr
i

)
⇔ vtri

l−1 ((−βp)k1vtri )
+

βrr
tr
i

(−βp)k1
< v.

A.4 Proofs of Results in Section 7

Proof of Lemma 7. Recall the solutions to q0 in (8) and (16) under AM and PM, respectively. We will show
that the RHS in (8) is larger than the RHS in (16) pointwise. Hence the fixed points, i.e., solution to q0
satisfies qAM0 > qPM0 .

Consider any seller i ∈ XC. Since gi(x) = f(x)e−h′−1
i ( x

b
), it follows that gi(x) ≤ f(x) for any x ∈ [bh′

i(0), 1),
where the equality holds iff x = bh′

i(0). Since f(·) and gi(·) are monotone increasing functions (see Lemma B1),
we have:

g−1
i (y) > f−1(y) for y > bh′

i(0).

Using the inequality above, it follows that at any q0, the RHS in (16) is smaller than the RHS in (8). Therefore,
qPM0 < qAM0 .

A consequence of this result is that
∑

i∈[n] q
PM
i >

∑
i∈[n] q

AM
i , and hence Q is non-empty.

Proof of Theorem 3. Since the cost of manipulation is identical across all sellers, we drop the subscript, and
use h(·) and g(·).
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(a) Consider i ∈XC. Since xPM
i = 0, from Theorem 2 we have

f(qPMi ) = Aiq
PM
0 < Aiq

AM
0 = f(qAMi )

The inequality above follows from Lemma 7 (qPM0 < qAM0 ). Since f(·) is monotone, qPMi < qAMi . Since
mPM

i = 1

b(1−qPMi )
and mAM

i = 1

b(1−qAMi )
, we have mPM

i < mAM
i . Since πi = miqi for i ∈ XC, we have that

πPM
i < πAM

i . Combining these, we have,

i ∈X
C =⇒ i ∈ Q

C, i.e., X
C ⊆ Q

C, and

i ∈X
C =⇒ i ∈ ΠC, i.e., X

C ⊆ ΠC

Next, consider firm i ∈ QC. Since qAMi > qPMi , and mi =
1

b(1−qi)
under both AM and PM, it follows that

the profit from sales, πAM
i = mAM

i qAMi > mPM
i qPMi ≥ mPM

i qPMi − h(xPM
i ) = πPM

i . Hence, i ∈ ΠC. That is,
QC ⊆ ΠC. Taken together,

X
C ⊆ Q

C ⊆ ΠC.

(b) First, we establish that n ∈ Q. Consider seller n. Recall, from Lemma 3 that n ∈ X and X is
contiguous. Under the two settings, AM and PM, we can write qj and q0 in terms of qn as follows:

Under AM: qj = f−1

(
Aj

An
f(qn)

)
and q0 =

f(qn)

An

Under PM: qj =

 g−1
(

Aj

An
g(qn)

)
, if j ∈X;

f−1
(

Aj

An
g(qn)

)
, if j ∈XC.

, and q0 =
g(qn)

An

The solution to qn is obtained by solving the following:

qAMn solves qn = 1−

∑
j ̸=n

f−1

(
Aj

An
f(qn)

)
︸ ︷︷ ︸

qj

+
f(qn)

An︸ ︷︷ ︸
q0

 ,

qPMn solves qn = 1−


∑

j ̸=n,j∈X

g−1

(
Aj

An
g(qn)

)
︸ ︷︷ ︸

qj ,j∈X,j ̸=n

+
∑
j∈XC

f−1

(
Aj

An
g(qn)

)
︸ ︷︷ ︸

qj ,j∈XC

+
g(qn)

An︸ ︷︷ ︸
q0

 .

The RHS in the equations above are qj , j ̸= n and q0 in terms of qn. To show that qPMn > qAMn , we
show that the RHS in the second equation (PM) is smaller than the RHS in the first equation (AM).
It suffices to compare the terms inside the brackets.

• For j ∈X, j ̸= n, the following holds:

f−1

(
Aj

An
f(qn)

)
≥ g−1

(
Aj

An
g(qn)

)
.

From Lemma B2 in the appendix, the above inequality follows. In particular, the inequality is
strict if Aj < An. Therefore, we have the comparison for qj , j ∈X, j ̸= n.

• For j ∈XC, since g(z) ≤ f(z), we have the following:

f−1

(
Aj

An
f(qn)

)
≥ f−1

(
Aj

An
g(qn)

)
• For q0, we have f(qn) < g(qn).

Therefore, the terms inside the bracket are higher under AM than under PM. Thus, the RHS is smaller
under AM than under PM. Therefore, the solution (i.e., the fixed point) is also smaller under AM, i.e.,
qAMn < qPMn .

Next, we establish that Q is upward-closed in [n]. Consider seller i ∈X. Using Theorem 2, we have:

g(qPMi ) = Aiq
PM
0 .
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Since g(z) = f(z)e−h′−1( z
b ), we can write the above equation as:

f(qPMi ) = Aiq
PM
0 eh

′−1( 1
b
g−1(Aiq

PM
0 ))

Suppose qPMi > qAMi for some i ∈ [n]. We are to show that qPMj > qAMj for all j > i. Since f(·) is
monotone, f(qPMi ) > f(qAMi ). Therefore,

f(qPMi ) > f(qAMi ) ⇔ Aiq
PM
0 e

h′−1

(
g−1(Aiq

PM
0 )

b

)
> Aiq

AM
0

⇔ e
h′−1

(
g−1(Aiq

PM
0 )

b

)
>

qAM0

qPM0

⇔ g−1(Aiq
PM
0 ) > bh′

(
log

qAM0

qPM0

)
︸ ︷︷ ︸

≜ϕ

.

⇔ g−1(Aiq
PM
0 ) > bϕ

⇔ Aiq
PM
0 > g(bϕ).

⇔ Ai >
1

qPM0

(
bϕe

1
1−bϕ e−h′−1(ϕ)

)
︸ ︷︷ ︸

a constant

.

The RHS in the last inequality above is a constant. Thus, for any j > i, we have that Aj ≥ Ai =⇒
qPMj > qAMj . Together, we have that Q is non-empty and upward-closed in [n].

Proof of Theorem 4. We first show the result on the seller’s market share (part (a)). We then show the result
on seller’s profit (part (b)).

(a) From Theorem 2, recall that the equilibrium market share of seller i is as follows:

qPMi =

{
f−1(Aiq

PM
0 ), if i ∈XC;

g−1(Aiq
PM
0 ), if i ∈X.

(39)

The following algebraic expressions are useful: Since h(x) = λ(ex − 1), we have:

h′(x) = h′′(x) = λex,

h′−1(z) = log
( z
λ

)
.

Using these expressions, g(x) can be written as follows:

g(x) = f(x)e−h′−1( x
b
) = f(x)

bλ

x
.

First, we show that qPM0 is increasing in λ. Since f(·) is increasing, it follows that qPMi , i ∈ XC is
increasing in λ. Next, we show that qPMi , i ∈X is decreasing in λ.

Below, we show that qPM0 is decreasing in λ. Since qPM0 = 1−
∑

i∈[n] q
PM
i , we have:

dqPM0
dλ

= −
∑
i∈[n]

dqPMi
dλ

(40)

• Consider i ∈XC: Since f(qPMi ) = Aiq
PM
0 , differentiating both sides w.r.t. λ, we have:

d

dλ
(f(qi)) =

d

dλ

(
Aiq

PM
0

)
=⇒ f ′(qPMi )

dqPMi
dλ

= Ai
dqPM0
dλ

=⇒ dqPMi
dλ

=
1

f ′(qPMi )

(
Ai

dqPM0
dλ

)
.
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• Consider i ∈X: Since g(qPMi ) = Aiq
PM
0 ,

d

dλ

(
g(qPMi )

)
=

d

dλ

(
Aiq

PM
0

)
=⇒ g′(qPMi )

dqPMi
dλ

+
∂g(qPMi )

∂λ
= Ai

dqPM0
dλ

=⇒ dqPMi
dλ

=
1

g′(qPMi )

(
Ai

dqPM0
dλ
− ∂g(qPMi )

∂λ

)
.

Substituting the above in the RHS of (40) and using the identities, we have:

dqPMi
dλ

=


Ai

f ′(qPMi )

dqPM0
dλ

, if i ∈XC;

1

g′(qPMi )

(
Ai

dqPM0
dλ
− ∂g(qPMi )

∂λ

)
, if i ∈X.

In the RHS above, using algebraic manipulation, we have
∂g(qPMi )

∂λ
=

g(qPMi )

λ
=

Aiq
PM
0

λ
. Substituting the

above in (40), we have:

dqPM0
dλ

=

∑
i∈X

∂g(qPMi )

∂λ

g′(qPMi )

1 +
∑

i∈XC
Ai

f ′(qPMi )
+
∑

i∈X

Ai

g′(qPMi )

=
qPM0 τ

λ
. (41)

Recall the definition of τ in (??). Indeed, τ ∈ (0, 1). The RHS of (41) is positive. Therefore, qPM0 is
increasing in λ. Consequently, qPMi , i ∈XC is also increasing in λ.

Now, consider qPMi , i ∈X. Using (39), we have:

dqPMi
dλ

=
1

g′(qPMi )

Ai
dqPM0
dλ
− ∂g(qPMi )

∂λ︸ ︷︷ ︸
<0


= − 1

g′(qPMi )

qPM0
λ

(1− τ) . (42)

Since τ ∈ (0, 1), the RHS above is negative. Therefore, qPMi , i ∈X, is decreasing in λ.

(b) To show that πPM
i , i ∈ [n], is increasing in λ, we first show the result for i ∈ XC. We then show the

result for i ∈X. Consider seller i ∈XC. Since xi = 0, seller i’s profit is

πi = miqi =
qPMi

b(1− qPMi )
,

which is monotone in qPMi . From part (a) of this result, since qPMi is increasing in λ, it follows that πPM
i

is increasing in λ. Now, consider seller i ∈X. Recall that seller i’s equilibrium profit is

πi = miqi︸︷︷︸
direct profit from sales

− h
(
h′−1

(qi
b

))
︸ ︷︷ ︸

cost of manipulation

.

Substituting for h(·) and h′−1(·), we have:

πPM
i =

qPMi
b(1− qPMi )

− λ

(
qPMi
bλ
− 1

)
=⇒ dπPM

i

dλ
=

(2− qi)qi
b(1− qi)2

dqi
dλ

+ 1.

For the RHS to be positive, we require the following condition to hold:

1 >

(
−dqPMi

dλ

)(
(2− qPMi )qPMi
b(1− qPMi )2

)
. (43)
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Substituting for
dqPMi
dλ

from (42), the condition in (43) simplifies to:

λ >
qPMi (2− qPMi )

b
(1− τ) .

In the RHS, qi(2 − qi) is increasing in qi ∈ [0, 1]. If A1 ≤ A2 ≤ . . . An, and hence, qi is an increasing

sequence, an upper bound on the RHS is
qPMn (2−qPMn )

b
(1− τ)

Proof of Theorem 5. Consider the consumer utility model below

ui = ai + δxi − bpi + ϵi

Recall the definition of γi in (15):

γi =

{
Ai

f(bh′
i(0))

, if h′
i(0) <

1
b
;

0, otherwise.

Let x̂i = δxi. We can rewrite the game in this setting as a game where firms choose (x̂i, pi), and face the

following cost of manipulation ĥ
(δ)
i (·):

ĥ
(δ)
i (x) = hi

(x
δ

)
Fix δ. In this game, we have:

γ
(δ)
i =

{
Ai

f( b
δ
h′
i(0))

, if h′
i(0) <

δ
b
;

0, otherwise.

Observe that γi(δ) is (weakly) increasing in δ. Next, we will show that qPM0
(δ)

is decreasing in δ. Let g
(δ)
i (z)

denote the following:

g
(δ)
i (z) = ze

1
1−z e−δh′−1

i ( δ
b
z) =

f(z)

eδh
′−1
i ( δ

b
z)

.

Observe that g
(δ)
i (z) is decreasing in δ. For fixed δ, g

(δ)
i (·) is a monotone increasing function. We can show

that qPM0 is the solution to the following fixed point equation:

q0 = 1−
∑
i∈X

g
(δ)
i

−1
(Aiq0)−

∑
i∈XC

f−1(Aiq0).

For any δ, following the same approach as in Theorem 2, a solution to q0 exists and is unique. Let qPM0
(δ)

denote this solution. Since g
(δ)
i (z) is decreasing in δ and g

(δ)
i (·) is a monotone increasing function, it follows

that qPM0
(δ)

is decreasing in δ. Combining the observations that γi
(δ) is increasing in δ and qPM0

(δ)
is decreasing

in δ, we have the result that for any δ ≤ δ′, X(δ) ⊆X(δ′).

Proof of Theorem 6. We simplify the industry revenues using seller i’s best response in (10):

∑
i

piqi =
∑
i

ci + mi︸︷︷︸
= 1

b(1−qi)

 qi

=
∑
i

ciqi +
1

b

∑
i

qi
1− qi︸ ︷︷ ︸

1
1−qi

−1

.

=
∑
i

ciqi −
n

b
+

1

b

∑
i

1

1− qi
.
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The RHS comprises of three terms. The second term is a constant. Consider the first term. Recall from
Lemma 7 that

∑
i∈[n] q

PM
i >

∑
i∈[n] q

AM
i . Denote the following:

∆1 =
∑
i∈Q

(qPMi − qAMi ),

∆2 =
∑
i∈QC

(qAMi − qPMi ),

iQC = max
i∈QC

i, iQ = min
i∈Q

i.

From Lemma 7, it holds that ∆1 > ∆2. Next,∑
i∈Q

ci(q
PM
i − qAMi ) ≥ ciQ∆1

> ci
QC
∆2

≥
∑
i∈QC

ci(q
AM
i − qPMi ).

The first and third inequalities above follow from c1 ≤ c2 ≤ . . . cn, and the second inequality follows from the
observation that iQC < iQ . Therefore,

∑
i∈[n] ci(q

PM
i − qAMi ) > 0. Consider the third term. Define the function

s(z) =
1

1− z
.

s(z) is strictly convex and strictly increasing in z. For any q = (q1, q2, . . . , qn), where q1 ≤ q2 ≤ . . . qn, define
the following function:

S(q) =
∑
i∈[n]

s(qi).

We compare S(qAM) and S(qPM). Depending on whether QC is empty or non-empty, we have the following
cases.

• Suppose QC is empty. Then, qPMi > qAMi for all i. Since s(z) is increasing in z, it follows that s(qPMi ) >
s(qAMi ) for all i. Thus, S(qPM) > S(qAM).

• Suppose QC is non-empty. Recall, from Theorem 3, that n ∈ Q. We construct a lower bound on
S(qPM)− S(qAM), and show that the lower bound is positive. Therefore,

S(qPM)− S(qAM) =
∑
i∈Q

(
s(qPMi )− s(qAMi )

)
−
∑
i∈QC

(
s(qAMi )− s(qPMi )

)
Due to the convexity of s(z), we have:∑

i∈Q

(
s(qPMi )− s(qAMi )

)
≥ s′(qAMiQ

)∆1

∑
i∈QC

(
s(qAMi )− s(qPMi )

)
≤ s′(qAMi

QC
)∆2.

Due to convexity of s(z) (i.e., s′(z) is increasing in z) and the observation that qAMi is increasing in Ai

(in Theorem 1), we have:
s′(qAMiQ

) ≥ s′(qAMi
QC
).

Since ∆1 > ∆2, we have:

s′(qAMiQ
)∆1 > s′(qAMi

QC
)∆2 =⇒

∑
i∈Q

(
s(qPMi )− s(qAMi )

)
>
∑
i∈QC

(
s(qAMi )− s(qPMi )

)
=⇒ S(qPM) > S(qAM).
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B Helpful Results

Some helpful results and their proofs are listed below.

Lemma B1. Suppose h′
i(0) < 1

b
. Under Assumption 1, gi(z) is increasing in z ∈ [bh′

i(0), 1), gi(bh
′
i(0)) =

f(bh′(0)) = bh′(0)e
1

1−bh′
i
(0) , gi(1) =∞.

Proof of Lemma B1. For any z ∈ [bh′
i(0), 1),

g′(z) = e
1

1−z
−h′−1

i ( 1
b
z)

(
1−

z
b

h′′
i (h

′−1
i ( z

b
))

+
z

(1− z)2

)

The term outside the brackets in the RHS is positive. We show that the sum of the first and second term inside

the bracket is positive. Substituting z → yb, it suffices to show that 1− y

h′′
i (h′−1

i (y))
> 0, where h′

i(0) ≤ y < 1
b
.

Since hi(·) is convex, it suffices to show y < h′′
i (h

′−1
i (y)). Substitute ŷ = h′−1

i (y). Then, we are required to

show h′
i(ŷ) < h′′

i (ŷ), which holds from Assumption 1(b).

Lemma B2. Fix k ∈ (0, 1]. For any z ∈ (0, 1), g−1
i (kgi(z)) ≤ f−1(kf(z)), where equality holds iff k = 1.

Proof of Lemma B2. For convenience, we drop the subscript i. Let

z1 = g−1(kg(z)) =⇒ g(z1) = kg(z)

z2 = f−1(kf(z)) =⇒ f(z2) = kf(z).

We are required to show that z1 < z2. Combining these two equations and using (14), we have:

f(z1)

f(z2)
= e(h

′−1( z1
b )−h′−1( z

b )).

Since k ∈ (0, 1], we have that z1 ≤ z with a strict inequality if k < 1. Therefore, the RHS is less than or equal

to 1. Since f(·) is monotone and positive, z1 ≤ z2.

Recall the definition of r(q) from (??) in Section 7:

r(q) = q(2− q)

(
1− 2(1− q)2

2q2 − 6q + 3

)
.

Lemma B3. For 0 ≤ q < 1
2
, we have :

(a) r(q) is concave in q.

(b) r(q) < 1
2
.

Proof of Lemma B3. (a) We express r(q) as follows:

r(q) =
q(2− q)(1− 2q)

2q2 − 6q + 3
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To show that r(q) is concave in q ∈
[
0, 1

2

]
, we will show that r′′(q) < 0 in q ∈

[
0, 1

2

]
. r′′(q) is as follows:

r′′(q) =

P (q), negative in [0, 1
2
]︷ ︸︸ ︷

2(8q3 − 18q2 + 18q − 9)(
2

(
3

2
− q

)2

− 3

2

)3

︸ ︷︷ ︸
positive in [0, 1

2
]

The denominator in the RHS above is decreasing in q for q ∈
[
0, 1

2

]
and is positive at q = 1

2
. Therefore,

the denominator is positive for q ∈
[
0, 1

2

]
. For convenience, denote the numerator in the RHS by P (q).

We show that P (q) < 0 for q ∈
[
0, 1

2

]
. We have:

P ′(q) = 3

(
16

(
q − 3

4

)2

+
3

4

)

Observe that P ′(q) > 0. Therefore, P (q) is increasing in q for q ∈
[
0, 1

2

]
. Through straightforward

algebra, we can verify that P
(
1
2

)
= −7. Therefore, P (q) < 0 for q ∈

[
0, 1

2

]
. So, we can conclude that

r′′(q) < 0 for q ∈
[
0, 1

2

]
.

(b) The first derivative of r(q) is as follows:

r′(q) =
2(1− q)

(2q2 − 6q + 3)2
(−2q3 + 10q2 − 12q + 3)︸ ︷︷ ︸

≜M(q)

(44)

From part (a) of this result, FOC’s are necessary and sufficient to find a global maximizer of r(q) for

q ∈ [0, 0.5]. Setting the RHS of (44) to 0 is equivalent to setting the last term in the RHS above,

denoted by M(q), to 0. Let ∆ as the discriminant of M(q); ∆ = 564. This implies that we have three

distinct real roots for M(q) = 0. Let q(i) denote the ith root for M(q) = 0. We have:

q(1) =
5

3
+

7

9
(
− 1

2
+

√
3i
2

)
3

√
41
108

+
√
47i
12

+

(
−1

2
+

√
3i

2

)
3

√
41

108
+

√
47i

12

≈ 0.33956

q(2) =
5

3
+

(
−1

2
−
√
3i

2

)
3

√
41

108
+

√
47i

12
+

7

9
(
− 1

2
−

√
3i
2

)
3

√
41
108

+
√
47i
12

≈ 1.3240

q(3) =
5

3
+

7

9 3

√
41
108

+
√
47i
12

+
3

√
41

108
+

√
47i

12

≈ 3.3364

Correspondingly, r(q(1)) ≈ 0.152.
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C Maximum Likelihood Estimation of the MNL Choice Model with Un-

observed No Purchase Data

Consider the maximum likelihood estimation procedure where the consumer utility model is as follows:

ui = β0 + βppi + βrri + ϵi, i ∈ [n], u0 = 0,

ϵi are i.i.d. Gumbel random variables, and consumer purchase model follows

qi =
eui

1 +
∑

j∈[K] e
uj

, i ∈ [n] ∪ {0}.

The likelihood function, given purchase and no-purchase data (s = (si)i∈[n], s0), is as follows:

L(β|s, s0) =
s!∏

i∈[n]∪{0} si!

∏
i∈[n]∪{0}

qsii .

where s =
∑

i∈[n]∪{0} si. The log-likelihood is as follows:

logL(β|n, n0) =
∑
i∈[n]

si log qi + s0 log q0 + SL(s)−
∑

i∈[n]∪{0}

SL(si),

where, for any j ∈ I+, SL(j) =
∑j

j′=1 log(j
′).

Let q̂i denote the empirical market share, i.e., q̂i =
si
s
. Corresponding to any vector y = {yi}i∈[n], consider

the random variable:

ỹ = q0 ◦ 0 +
∑
i∈[n]

qi ◦ yi.

Define the following operators:

Ê[y] = E[ỹ] =
∑
i∈[n]

qiyi,

V̂ar[y] = Var[ỹ] =
∑
i∈[n]

qiy
2
i −

∑
i∈[K]

qiyi

2

, and

ˆCov[y1,y2] = E[ỹAỹB ]− E[ỹA]E[ỹB ].

We have the following:

∇ logL(β|s, s0) = n
[∑

i∈[n] (q̂i − qi)
∑

i∈[n] pi (q̂i − qi)
∑

i∈[n] ri (q̂i − qi)
]

and H ≜ ∇2 logL(θ|s, s0) = −n

q0
∑

j qj q0Ê[p] q0Ê[r]
q0Ê[p] V̂ar[p] ˆCov[p, r]

q0Ê[r] ˆCov[p, r] V̂ar[r]


For given s0, H is negative semi-definite.10 Hence, FOC’s identify the MLE of β. Since s0 is unknown, we

identify the maximum likelihood estimates for β, denoted by βMLE using the EM approach.

1: Input: s,p, r, n, ε

2: β0 ← 0, ω ← 0

3: repeat

4: ω ← ω + 1 ▷ E-Step

10This follows from the fact that the variance-covariance matrix of a multivariate distribution is positive
definite.
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5: for i ∈ [n] do

6: ui ← βω
0 + βω

p pi + βω
r ri

7: qi ← eui

1+
∑

j∈[n] e
uj

8: s0 ← q0
1−q0

s

9: end for ▷ M-Step

10: βω ← argmaxβ∈ℜ3 logL(β|s, s0)
11: until ∥βω − βω−1∥ < ϵ

We now substitute βMLE (obtained from the above approach) in H. In particular, q ≡ q(βMLE). We identify

the inverse of H, denoted by H−1. The standard errors of βMLE corresponds to the diagonal elements of H−1.

In our model, we have data across 24 weeks for 11 products. We pool the data across the 24 weeks to estimate

β. Our estimation results are shown in Table 1.
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D Consumer Surplus in the MNL Model

Consider the canonical MNL choice model, where the utility from consuming product i ∈ [n], and 0 (the

no-purchase option) is:

u0 = ϵ0,

ui = vi + ϵi for i ∈ [n]

where ϵ0 and ϵi, i ∈ [n] are i.i.d Gumbel r.v.’s. A representative consumer chooses the no purchase option or

one of the products i ∈ [n] as follows:

consumer chooses i if: vi + ϵi > max{0,max
j ̸=i
{vj + ϵj}}

consumer chooses 0 if: ϵ0 > max
i∈[n]
{vi + ϵi}.

Recall that the consumer purchases product i w.p. qi as follows:

q0 =
1

1 +
∑

j∈[n] e
vj

qi =
evi

1 +
∑

j∈[n] e
vj

for i ∈ [n]

That is, the consumer purchase follows the following discrete distribution over [n] ∪ {0}:

Consumer Purchase ∼ q0 ◦ 0 +
∑
i∈[n]

qi ◦ i.

The expected consumer surplus (where the expectations are taken over ϵ) is as follows:

Expected CS = q0Eϵ0,ϵ[ϵ0|ϵ0 > max
i∈[n]

(vi + ϵi)] +∑
i∈[n]

qiEϵ0,ϵ[(vi + ϵi)|vi + ϵi > max{ϵ0, max
j∈[n]\{i}

(vj + ϵj)}]

Recall that

q0 = Eϵ0,ϵ

[
1

(
ϵ0|ϵ0 > max

i∈[n]
vi + ϵi

)]
qi = Eϵ0,ϵ

[
1

(
vi + ϵi > max{ϵ0, max

j∈[n],j ̸=i
vj + ϵj}

)]
.

= Eϵ

[∫
y0∈ℜ

y01

(
y0 > max

i∈[n]
(vi + ϵi)

)
f(y0)dy0

]
+∑

i∈[n]

Eϵ0,ϵ−i

∫
yi∈ℜ

(vi + yi)1

(
vi + yi > max{ϵ0, max

j∈[n]\{i}
(vj + ϵj)}

)
f(yi)dyi


=

∫
y0∈ℜ

y0
∏
i∈[n]

F (y0 − vi)f(y0)dy0 +

∑
i∈[n]

∫
yi∈ℜ

(vi + yi)F (vi + yi)
∏

j∈[n]\{i}

F (vi − vj + yi)f(yi)dyi.
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where f(·) and F (·) represent the p.d.f. and c.d.f. of the standard Gumbel distribution. Expanding the above,

Expected CS =

∫
y0∈ℜ

y0e
−(y0+

∑
j∈[n] e

−y0β0
j )dy0

+
∑
i∈[n]

(
viqi +

∫
yi∈ℜ

yie
−(yi+

∑
j ̸=i e−yiβi

j+e−yiβi
0)dyi

)

where β0
j = evj−v0 = evj and βi

j = evj−vi .

Expected CS = q0 (γ − log(q0)) +
∑
i∈[n]

qi (γ − log(q0))

= γ︸︷︷︸
Euler’s constant, ≈0.577

− log(q0)︸ ︷︷ ︸
=log(1+

∑
i∈[n] e

vi)

.

In the absence of manipulation, observe that

vAM0 = 0

vAMi = ai − bpAMi = log(Ai)− bmAM
i .

Therefore,

Expected CS under AM = γ − log(qAM0 ).

In the presence of manipulation, prior to purchase, consumers’ anticipate the following:

vPMi = ai + xPM
i − bpPMi = log(Ai) + xPM

i − bmPM
i .

Indeed, the market shares qPMi result from the above values of vi. However, post-purchase, consumers realize

the true utility as follows:

ṽPMi = ai − bpPMi = log(Ai)− bmPM
i .

The post-purchase consumer surplus can be written as follows:

Consumer Surplus = Eϵ

[∫
y0∈ℜ

y01

(
y0 > max

i∈[n]
(vPMi + ϵi)

)
f(y0)dy0

]
︸ ︷︷ ︸

CS0

+

∑
i∈[n]

Eϵ0,ϵ−i

[∫
yi∈ℜ

(ṽPMi + yi)1

(
vPMi + yi > max{ϵ0, max

j∈[n],j ̸=i
(vPMj + ϵj)}

)
f(yi)dyi

]
︸ ︷︷ ︸

CSi

In the second term, add and subtract xi to ṽPMi + yi. We have:

Consumer Surplus = γ − log
(
qPM0

)
−

∑
i∈[n]

xPM
i qPMi︸ ︷︷ ︸

=xPM, the average level of manipulation

.

Therefore,

CSAM > CSPM ⇔ xPM > log

(
qAM0

qPM0

)
.
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E Verification: Equation (21) Satisfies Assumption 1

For notational convenience, we denote x̃i =
xi
βr

, and yi = vtri
x̃i

R−rtri −x̃i
. Then, we re-write (21) as

hi (y(x̃i)) = k1yi(x̃i) + k2y
2
i (x̃i). (45)

To verify Assumption 1(a), we derive h′
i(xi) and h′′

i (xi) as

h′
i(xi) = k1

dyi
dxi

+ 2k2yi(x̃i)
dyi
dxi

=
dyi
dxi

(k1 + 2k2yi(x̃i))

(46)

h′′
i (xi) =

d2yi
dx2

i

(k1 + k2yi(x̃i)) + 2k2

(
dyi
dxi

)2

(47)

By direct calculation, we have:
dyi
dxi

=
1

βr

dyi
dx̃i

=
vtri (R− rtri )

βr(R− rtri − x̃i)2

d2yi
dx2

i

=
2vtri (R− rtri )

β2
r (R− rtri − x̃i)3

(48)

Since x̃i ∈ [0, R − rtri ) and rtri ∈ [0, R), Assumption 1(a) is satisfied. Next, we verify Assumption 1(b) by

showing that
h′′
i (xi)

h′
i(xi)

≥ 1. Recall from (46), (47) and (48), we have:

h′′
i

h′
i

=
y′′
i (k1 + k2yi) + 2k2(y

′
i)

2

y′
i(k1 + 2k2yi)

=
y′′
i

y′
i

+
2k2y

′
i

k1 + 2k2yi

≥ 2

√
2k2y′′

i

k1 + 2k2yi

= 2

√√√√√√√
4k2vtri (R− rtri )

β2
r (R− rtri − x̃i)

2︸ ︷︷ ︸
<(R−rtri )2

(
k1(R− rtri ) + (2k2v

tr
i − k1)x̃i

)︸ ︷︷ ︸
<((2vtr

i +1)k2−k1)(R−rtri )

>
4k2 − vtri

β2
r (R− rtri )

2 ((2vtri + 1) k2 − k1)︸ ︷︷ ︸
♢

For any seller i ∈ [n] and k1 > 0, ♢ is a bijection: k2 ∈ [0,+∞]→ [−∞,+∞]. That is, ∀i ∈ [n]∧k1 > 0,∃k2 ∈
[0,+∞] : ♢ > 1. This completes our verification for Assumption 1.
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